Date of this Version
12-1-2022
Document Type
Article
Abstract
A real-time, metadata-driven electric vehicle routing optimization to reduce on-road energy requirements is proposed in this work. The proposed strategy employs the state–action–reward–state–action (SARSA) algorithm to learn the EV’s maximum travel policy as an agent. As a function of the received reward signal, the policy model evaluates the optimal behavior of the agent. Markov chain models (MCMs) are used to estimate the agent’s energy requirements on the road, in which a single Markov step represents the average energy consumption based on practical driving conditions, including driving patterns, road conditions, and restrictions that may apply. A real-time simulation in Python with TensorFlow, NumPy, and Pandas library requirements was run, considering real-life driving data for two EVs trips retrieved from Google’s API. The two trips started at 4.30 p.m. on 11 October 2021, in Los Angeles, California, and Miami, Florida, to reach EV charging stations six miles away from the starting locations. According to simulation results, the proposed AI-based energy minimization framework reduces the energy requirement by 11.04% and 5.72%, respectively. The results yield lower energy consumption compared with Google’s suggested routes and previous work reported in the literature using the DDQN algorithm.
Recommended Citation
Aljohani, Tawfiq M. and Mohammed, Osama, "A Real-Time Energy Consumption Minimization Framework for Electric Vehicles Routing Optimization Based on SARSA Reinforcement Learning" (2022). Electrical and Computer Engineering Faculty Publications. 93.
https://digitalcommons.fiu.edu/ece_fac/93