Modelling microbial infection to address global health challenges

Date of Publication

2019 12:00 AM

Security Theme

Health

Keywords

Health Security, global health, HIV crisis, pandemics, epidemiological, ebola virus, respiratory syndrome, SARS coronavirus, West Nile virus, Zika virus, antimicrobial resistance

Description

The continued growth of the world’s population and increased interconnectivity heighten the risk that infectious diseases pose for human health worldwide. Epidemiological modelling is a tool that can be used to mitigate this risk by predicting disease spread or quantifying the impact of different intervention strategies on disease transmission dynamics. We illustrate how four decades of methodological advances and improved data quality have facilitated the contribution of modelling to address global health challenges, exemplified by models for the HIV crisis, emerging pathogens and pandemic preparedness. Throughout, we discuss the importance of designing a model that is appropriate to the research question and the available data. We highlight pitfalls that can arise in model development, validation and interpretation. Close collaboration between empiricists and modellers continues to improve the accuracy of predictions and the optimization of models for public health decision-making.

Share

 
COinS
 
Jan 1st, 12:00 AM

Modelling microbial infection to address global health challenges

The continued growth of the world’s population and increased interconnectivity heighten the risk that infectious diseases pose for human health worldwide. Epidemiological modelling is a tool that can be used to mitigate this risk by predicting disease spread or quantifying the impact of different intervention strategies on disease transmission dynamics. We illustrate how four decades of methodological advances and improved data quality have facilitated the contribution of modelling to address global health challenges, exemplified by models for the HIV crisis, emerging pathogens and pandemic preparedness. Throughout, we discuss the importance of designing a model that is appropriate to the research question and the available data. We highlight pitfalls that can arise in model development, validation and interpretation. Close collaboration between empiricists and modellers continues to improve the accuracy of predictions and the optimization of models for public health decision-making.