Date of this Version
4-2014
Document Type
Article
Abstract
This paper presents a combinatorial standalone permanent magnet synchronous generator (PMSG) based variable speed wind turbine (VSWT) and small-size superconducting magnetic energy storage (SMES) system into the DC microgrid system. The principal purpose of SMES system is to preserve power balance by absorbing power during peak wind generation and to release it during low power generation. This work accomplished by describing the optimized design of the SMES solenoid coil, ensuring the desired energy storage capacity based on the simulated annealing (SA) algorithm. More importantly, the new control technique is developed for bi-directional DC-DC converter to level output power of the wind turbine depending on the demand thereby reducing the capacity of the DC-DC converter system. Detailed simulation studies implemented in PSCAD/EMTDC corroborate the superior robustness and balancing performance of the proposed micro-SMES controller with an optimal coil size under various situations including variable wind speed. This combination will result in “scaling-factors” knowledge through downsizing strategy which will lead to the most efficient system from cost cutting, energy savings, and downsizing viewpoints.
Recommended Citation
Sarwat, Arif I. and Moghadasiriseh, Amirhasan, "A Downsizing Strategy for Combinatorial PMSG Based Wind Turbine and Micro-SMES System Applied in Standalone DC Microgrid" (2014). Electrical and Computer Engineering Faculty Publications. 61.
https://digitalcommons.fiu.edu/ece_fac/61
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Comments
Originally published in the International Journal of Energy Sciences.