Date of this Version
2014
Document Type
Article
Rights
by
Abstract
Dynamic treatment regimes are of growing interest across the clinical sciences because these regimes provide one way to operationalize and thus inform sequential personalized clinical decision making. Formally, a dynamic treatment regime is a sequence of decision rules, one per stage of clinical intervention. Each decision rule maps up-to-date patient information to a recommended treatment. We briefly review a variety of approaches for using data to construct the decision rules. We then review a critical inferential challenge that results from nonregularity, which often arises in this area. In particular, nonregularity arises in inference for parameters in the optimal dynamic treatment regime; the asymptotic, limiting, distribution of estimators are sensitive to local perturbations. We propose and evaluate a locally consistent Adaptive Confidence Interval (ACI) for the parameters of the optimal dynamic treatment regime. We use data from the Adaptive Pharmacological and Behavioral Treatments for Children with ADHD Trial as an illustrative example. We conclude by highlighting and discussing emerging theoretical problems in this area.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Recommended Citation
Laber, Eric B.; Lizotte, Daniel J.; Qian, Min; Pelham, William E.; Murphy, Susan A. Dynamic treatment regimes: Technical challenges and applications. Electron. J. Statist. 8 (2014), no. 1, 1225--1272. doi:10.1214/14-EJS920. http://projecteuclid.org/euclid.ejs/1408540283.
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Comments
Originally published in the Electronic Journal of Statistics.