Microheterogeneity of Topoisomerase IA/IB and Their DNA-Bound States
Date of this Version
2-28-2019
Document Type
Article
Rights
default
Abstract
Topoisomerases are important complex enzymes that modulate DNA topology to maintain chromosome superstructure and integrity. These enzymes are involved in many cellular processes that resolve specific DNA superstructures and intermediates. The low abundance combined with the biological heterogeneity of relevant intermediates of topoisomerases makes their structural information not readily accessible using traditional structural biology tools (e.g., NMR and X-ray crystallography). In the present work, a second-generation trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) was used to study topoisomerase IA (EcTopIA) and virus topoisomerase IB (vTopIB) as well as their complexes with a single-stranded DNA and a stem-loop DNA under native conditions. The higher trapping efficiency and extended mass range of the new, convex TIMS geometry allowed for the separation and identification of multiple conformational states for the two topoisomerases and their DNA complexes. Inspection of the conformational space of EcTopIA and vTopIB in complex with DNA showed that upon DNA binding, the number of conformational states is significantly reduced, suggesting that the DNA binding selects for a narrow range of conformers restricted by the interaction with the DNA substrate. The large microheterogeneity observed for the two DNA binding proteins suggests that they can have multiple biological functions. This work highlights the potential of TIMS-MS for the structural investigations of intrinsically disordered proteins (e.g., DNA binding proteins) as a way to gain a better understanding of the mechanisms involved in DNA substrate recognition, binding, and assembly of the catalytically active enzyme-DNA complex.
DOI
10.1021/acsomega.8b02887
Identifier
30842985
Recommended Citation
ACS Omega 2019, 4, 2, 3619–3626 Publication Date:February 18, 2019 https://doi.org/10.1021/acsomega.8b02887
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).