Date of this Version
7-3-2019
Document Type
Article
Rights
by
Abstract
Background: Genomes are non-randomly organized within the interphase nucleus; and spermatozoa are proposed to have a unique hairpin-loop configuration, which has been hypothesized to be critical for the ordered exodus of the paternal genome following fertilization. Recent studies suggest that the hairpin-loop model of sperm chromatin organization is more segmentally organized. The purpose of this study is to examine the 3D organization and hairpin-loop configurations of chromosomes in human spermatozoa. Methods: Three-color sperm-fluorescence in-situ hybridization was utilized against the centromeres, and chromosome p- and q-arms of eight chromosomes from five normozoospermic donors. Wide-field fluorescence microscopy and 3D modelling established the radial organization and hairpin-loop chromosome configurations in spermatozoa. Results: All chromosomes possessed reproducible non-random radial organization (p < 0.05) and formed discrete hairpin-loop configurations. However, chromosomes preferentially formed narrow or wide hairpin-loops. We did not find evidence to support the existence of a centralized chromocenter(s) with centromeres being more peripherally localized than one or both of their respective chromosome arms. Conclusion: This provides further evidence to support a more segmental organization of chromatin in the human sperm nucleus. This may be of significance for fertilization and early embryogenesis as specific genomic regions are likely to be exposed, remodeled, and activated first, following fertilization.
DOI
10.3390/genes10070504
Identifier
FIDC008167
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Recommended Citation
Ioannou, Dimitirios Ph.D. and Tempest, Helen G. Ph.D., "Human Sperm Chromosomes: To Form Hairpin-Loops, Or Not to Form Hairpin-Loops, That Is the Question" (2019). Biomolecular Sciences Institute: Faculty Publications. 33.
https://digitalcommons.fiu.edu/biomolecular_fac/33
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Comments
Originally published in Genes.