Document Type

Event

Keywords

Shoulder, glenohumeral internal rotation deficit (GIRD), range of motion (ROM)

Description

Objective: Establish intra- and inter-examiner reliability of glenohumeral range of motion (ROM) measures taken by a single-clinician using a mechanical inclinometer.

Design: A single-session, repeated-measure, randomized, counterbalanced design. Setting: Athletic Training laboratory. Participants: Ten college-aged volunteers (9 right-hand dominant; 4 males, 6 females; age=23.2±2.4y, mass=73±16kg, height=170±8cm) without shoulder or neck injuries within one year.

Interventions: Two Certified Athletic Trainers separately assessed passive glenohumeral (GH) internal (IR) and external (ER) rotation bilaterally. Each clinician secured the inclinometer to each subject’s distal forearm using elastic straps. Clinicians followed standard procedures for assessing ROM, with the participants supine on a standard treatment table with 90° of elbow flexion. A second investigator recorded the angle. Clinicians measured all shoulders once to assess inter-clinician reliability and eight shoulders twice to assess intra-clinician reliability. We used SPSS 14.0 (SPSS Inc., Chicago, IL) to calculate standard error of measure (SEM) and Intraclass Correlation Coefficients (ICC) to evaluate intra- and inter-clinician reliability.

Main Outcome Measures: Dependent variables were degrees of IR, ER, glenohumeral internal rotation deficit (GIRD) and total arc of rotation. We calculated GIRD as the bilateral difference in IR (nondominant–dominant) and total arc for each shoulder (IR+ER).

Results: Intra-clinician reliability for each examiner was excellent (ICC[1,1] range=0.90-0.96; SEM=2.2°-2.5°) for all measures. Examiners displayed excellent inter-clinician reliability (ICC[2,1] range=0.79-0.97; SEM=1.7°-3.0°) for all measures except nondominant IR which had good reliability(0.72).

Conclusions: Results suggest that clinicians can achieve reliable measures of GH rotation and GIRD using a single-clinician technique and an inexpensive, readily available mechanical inclinometer.

Identifier

FIDC005636

Included in

Education Commons

Share

COinS
 

Reliability of the Clinical Application of a Mechanical Inclinometer in Measuring Glenohumeral Motion

Objective: Establish intra- and inter-examiner reliability of glenohumeral range of motion (ROM) measures taken by a single-clinician using a mechanical inclinometer.

Design: A single-session, repeated-measure, randomized, counterbalanced design. Setting: Athletic Training laboratory. Participants: Ten college-aged volunteers (9 right-hand dominant; 4 males, 6 females; age=23.2±2.4y, mass=73±16kg, height=170±8cm) without shoulder or neck injuries within one year.

Interventions: Two Certified Athletic Trainers separately assessed passive glenohumeral (GH) internal (IR) and external (ER) rotation bilaterally. Each clinician secured the inclinometer to each subject’s distal forearm using elastic straps. Clinicians followed standard procedures for assessing ROM, with the participants supine on a standard treatment table with 90° of elbow flexion. A second investigator recorded the angle. Clinicians measured all shoulders once to assess inter-clinician reliability and eight shoulders twice to assess intra-clinician reliability. We used SPSS 14.0 (SPSS Inc., Chicago, IL) to calculate standard error of measure (SEM) and Intraclass Correlation Coefficients (ICC) to evaluate intra- and inter-clinician reliability.

Main Outcome Measures: Dependent variables were degrees of IR, ER, glenohumeral internal rotation deficit (GIRD) and total arc of rotation. We calculated GIRD as the bilateral difference in IR (nondominant–dominant) and total arc for each shoulder (IR+ER).

Results: Intra-clinician reliability for each examiner was excellent (ICC[1,1] range=0.90-0.96; SEM=2.2°-2.5°) for all measures. Examiners displayed excellent inter-clinician reliability (ICC[2,1] range=0.79-0.97; SEM=1.7°-3.0°) for all measures except nondominant IR which had good reliability(0.72).

Conclusions: Results suggest that clinicians can achieve reliable measures of GH rotation and GIRD using a single-clinician technique and an inexpensive, readily available mechanical inclinometer.