Date of this Version
5-10-2019
Document Type
Article
Abstract
Data generated for the Ti–Al–Cr–V system of metallic alloys from our previous publication, where the composition of 102 alloys were computationally Pareto optimized with the objective of simultaneously maximizing the Young’s modulus and minimizing density for a range of temperatures, was the starting point of the current research, where compositions at different temperatures of these alloys were analyzed for phase stability in order to generate new data for compositions and volume fractions of stable phases at various temperatures. This resulted in a large dataset where a lot of data were still missing as all the phases are not stable at a given temperature for all the compositions. The concept of Self-Organizing Maps (SOM) was then applied to determine correlations between alloy compositions, stabilities of desired phases at various temperatures, associated Young’s moduli and densities, and the effect of the composition of phases on these properties. This work should help alloy designers to determine the required chemical composition of a new alloy with reference to the temperature of application of that alloy and see the effect of temperature and composition on stable phases and associated properties of alloys.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Recommended Citation
Jha, Rajesh and Dulikravich, George S., "Design of High Temperature Ti–Al–Cr–V Alloys for Maximum Thermodynamic Stability Using Self-Organizing Maps" (2019). Department of Mechanical and Materials Engineering. 11.
https://digitalcommons.fiu.edu/mme_fac/11
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Comments
Originally published in Metals.