Novel In-Vitro Epilepsy iPSC Model
Department
Biomedical Engineering
Faculty Advisor
Wei-Chang Lin
Location
East and Center Ballrooms
Start Date
17-3-2015 10:00 AM
End Date
17-3-2015 11:00 AM
Session
Session 1
Session Topic
Poster
Abstract
The main focus of this ARCH research project is to create a novel in-vitro epilepsy model will using iPSC techniques. Neural tissue will be collected from both epileptic and control rats and then the neural tissue will be induced to pluripotent stem cells and regrown in a petri dish. It has been hypothesized that the regrown stem cells will have the same genetic characteristics as the host cells they come from. To confirm this both Western Blot and RTPCR will be performed on both the host tissue and the newly grown astrocytes and neurons (of both epileptic and control rats) to see if they share the same genetic/protein expression characteristics. This new epilepsy model, once established, will be used to facilitate the investigation of the correlation between epilepsy and genetic abnormalities in both neurons and astrocyte cells, critical to the development of better treatments of epilepsy.
File Type
Poster
Novel In-Vitro Epilepsy iPSC Model
East and Center Ballrooms
The main focus of this ARCH research project is to create a novel in-vitro epilepsy model will using iPSC techniques. Neural tissue will be collected from both epileptic and control rats and then the neural tissue will be induced to pluripotent stem cells and regrown in a petri dish. It has been hypothesized that the regrown stem cells will have the same genetic characteristics as the host cells they come from. To confirm this both Western Blot and RTPCR will be performed on both the host tissue and the newly grown astrocytes and neurons (of both epileptic and control rats) to see if they share the same genetic/protein expression characteristics. This new epilepsy model, once established, will be used to facilitate the investigation of the correlation between epilepsy and genetic abnormalities in both neurons and astrocyte cells, critical to the development of better treatments of epilepsy.
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Comments
**Abstract Only**