FCE LTER Journal Articles

Shifting N and P limitation along a north-south gradient of mangrove estuaries in South Florida

Abstract

A multivariate statistical analysis was applied to a 10 year, multiparameter data set in an effort to describe the spatial dependence and inherent variation of water quality patterns in the mangrove estuaries of Ten Thousand Islands – Whitewater Bay area. Principal component analysis (PCA) of 16 water quality parameters collected monthly resulted in five groupings, which explained 72.5% of the variance of the original variables. The “Organic” component (PCI) was composed of alkaline phosphatase activity, total organic nitrogen, and total organic carbon; the “Dissolved Inorganic N” component (PCII) contained NO 3 , NO 2 , and NH 4 + ; the “Phytoplankton” component (PCIII) was made up of total phosphorus, chlorophyll a, and turbidity; dissolved oxygen and temperature were inversely related (PCIV); and salinity and soluble reactive phosphorus made up PCV. A cluster analysis of the mean and SD of PC scores resulted in the spatial aggregation of the 47 fixed stations into six classes having similar water quality, which we defined as: Mangrove Rivers, Whitewater Bay, Gulf Islands, Coot Bay, Blackwater River, and Inland Waterway. Marked differences in physical, chemical, and biological characteristics among classes were illustrated by this technique. Comparison of medians and variability of parameters among classes allowed large scale generalizations as to underlying differences in water quality in these regions. A strong south to north gradient in estuaries from high N - low P to low N - high P was ascribed to marked differences in landuse, freshwater input, geomorphology, and sedimentary geology along this tract. The ecological significance of this gradient discussed along with potential effects of future restoration plans.

Comments

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

This document is currently not available here.

Share

COinS