Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Electrical Engineering
First Advisor's Name
Shekhar Bhansali
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Sakhrat Khizroev
Third Advisor's Name
Nezih Pala
Fourth Advisor's Name
Kinzy Jones
Fourth Advisor's Committee Title
Sylvia Thomas
Fifth Advisor's Committee Title
Abdul K. Rumaiz
Keywords
Silica nanowires; Microelectrodes; Biosensors; Vapor–liquid–solid; PSA
Date of Defense
7-31-2013
Abstract
In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated.
Silica nanowires were observed experimentally to determine how their physical and chemical properties could be tuned for integration into existing sensing structures. Growth kinetic experiments performed using gold and palladium catalysts at 1050 ˚C for 60 minutes in an open-tube furnace yielded dense and consistent silica nanowire growth. This consistent growth led to the development of growth model fitting, through use of the Maximum Likelihood Estimation (MLE) and Bayesian hierarchical modeling. Transmission electron microscopy studies revealed the nanowires to be amorphous and X-ray diffraction confirmed the composition to be SiO2 . Silica nanowires were monitored in epithelial breast cancer media using Impedance spectroscopy, to test biocompatibility, due to potential in vivo use as a diagnostic aid. It was found that palladium catalyzed silica nanowires were toxic to breast cancer cells, however, nanowires were inert at 1µg/mL concentrations.
Additionally a method for direct nanowire integration was developed that allowed for silica nanowires to be grown directly into interdigitated sensing structures. This technique eliminates the need for physical nanowire transfer thus preserving nanowire structure and performance integrity and further reduces fabrication cost. Successful nanowire integration was physically verified using Scanning electron microscopy and confirmed electrically using Electrochemical Impedance Spectroscopy of immobilized Prostate Specific Antigens (PSA).
The experiments performed above serve as a guideline to addressing the metallurgic challenges in nanoscale integration of materials with varying composition and to understanding the effects of nanomaterials on biological structures that come in contact with the human body.
Identifier
FI13120411
Recommended Citation
Huey, Eric G., "Site Specifc Growth of Metal Catalyzed Silica Nanowires for Biological and Chemical Sensing" (2013). FIU Electronic Theses and Dissertations. 984.
https://digitalcommons.fiu.edu/etd/984
Included in
Metallurgy Commons, Nanoscience and Nanotechnology Commons, Nanotechnology Fabrication Commons
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).