Document Type

Dissertation

Major/Program

Psychology

First Advisor's Name

Robert Lickliter

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

David Lewkowicz

Second Advisor's Committee Title

Committee Member

Third Advisor's Name

Lidia Kos

Third Advisor's Committee Title

Committee Member

Fourth Advisor's Name

Lorraine Bahrick

Fourth Advisor's Committee Title

Committee Member

Fifth Advisor's Name

Mary Levitt

Fifth Advisor's Committee Title

Committee Member

Keywords

multimodal perception, enhanced prenatal perception, intersensory processing

Date of Defense

11-7-2007

Abstract

This study explored the critical features of temporal synchrony for the facilitation of prenatal perceptual learning with respect to unimodal stimulation using an animal model, the bobwhite quail. The following related hypotheses were examined: (1) the availability of temporal synchrony is a critical feature to facilitate prenatal perceptual learning, (2) a single temporally synchronous note is sufficient to facilitate prenatal perceptual learning, with respect to unimodal stimulation, and (3) in situations where embryos are exposed to a single temporally synchronous note, facilitated perceptual learning, with respect to unimodal stimulation, will be optimal when the temporally synchronous note occurs at the onset of the stimulation bout. To assess these hypotheses, two experiments were conducted in which quail embryos were exposed to various audio-visual configurations of a bobwhite maternal call and tested at 24 hr after hatching for evidence of facilitated prenatal perceptual learning with respect to unimodal stimulation. Experiment 1 explored if intermodal equivalence was sufficient to facilitate prenatal perceptual learning with respect to unimodal stimulation. A Bimodal Sequential Temporal Equivalence (BSTE) condition was created that provided embryos with sequential auditory and visual stimulation in which the same amodal properties (rate, duration, rhythm) were made available across modalities. Experiment 2 assessed: (a) whether a limited number of temporally synchronous notes are sufficient for facilitated prenatal perceptual learning with respect to unimodal stimulation, and (b) whether there is a relationship between timing of occurrence of a temporally synchronous note and the facilitation of prenatal perceptual learning. Results revealed that prenatal exposure to BSTE was not sufficient to facilitate perceptual learning. In contrast, a maternal call that contained a single temporally synchronous note was sufficient to facilitate embryos’ prenatal perceptual learning with respect to unimodal stimulation. Furthermore, the most salient prenatal condition was that which contained the synchronous note at the onset of the call burst. Embryos’ prenatal perceptual learning of the call was four times faster in this condition than when exposed to a unimodal call. Taken together, bobwhite quail embryos’ remarkable sensitivity to temporal synchrony suggests that this amodal property plays a key role in attention and learning during prenatal development.

Identifier

FI08081526

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).