Document Type
Thesis
Degree
Master of Science (MS)
Major/Program
Biomedical Engineering
First Advisor's Name
Sharan Ramaswamy
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Yen-Chi Huang
Third Advisor's Name
Girma Bitsuamlak
Keywords
Tissue Engieering, heart valves, steady, pulsatile, computational fluid dynamics, quasi-static, stem cells
Date of Defense
11-9-2011
Abstract
Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by time-varying flow environments, play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). There is strong evidence to support this hypothesis in tissue engineering studies of bone. From observing native heart valve dynamics, OSS can be created by means of pulsatility or by cyclic specimen geometry changes. However, quantification of the individual or combined effects of these variables for the maximization of OSS environments in vitro is to date, not known. Accordingly, in this study we examined and quantified the role that i) physiologically relevant scales of pulsatility and ii) changes in geometry as a function of specimen flexure, have in creating OSS conditions for dynamic culture of tissue. A u-shaped custom made bioreactor capable of producing flow stretch and flexure was used. Computational Fluid Dynamic (CFD) simulations were performed through Ansys CFX (Ansys, Pittsburgh, PA) for both steady and pulsatile flow. We have shown that OSS can be maximized by inducing pulsatile flow over straight scaffolds. We believe that OSS promotes BMSCs tissue formation.
Identifier
FI11120806
Recommended Citation
Salinas, Manuel, "Heart Valve Tissue Engineering: A Study of Time Varying Effects and Sample Geometry" (2011). FIU Electronic Theses and Dissertations. 522.
https://digitalcommons.fiu.edu/etd/522
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Comments
Title page can be found in additional files