Document Type

Dissertation

Degree

Doctor of Philosophy (PhD)

Major/Program

Civil Engineering

First Advisor's Name

Mohammed Hadi

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Albert Gan

Second Advisor's Committee Title

Committee Member

Third Advisor's Name

Xia Jin

Third Advisor's Committee Title

Committee Member

Fourth Advisor's Name

Priyanka Alluri

Fourth Advisor's Committee Title

Committee Member

Fifth Advisor's Name

B M Golam Kibria

Fifth Advisor's Committee Title

Committee Member

Keywords

multi-scenario, multi-resolution, crowdsourced data, clustering, origin-destination matrices

Date of Defense

7-1-2022

Abstract

The success of analysis and simulation in transportation systems depends on the availability, quality, reliability, and consistency of real-world data and the methods for utilizing the data. Additional data and data requirements are needed to support advanced analysis and simulation strategies such as multi-resolution modeling (MRM) and multi-scenario analysis. This study has developed, demonstrated, and assessed a systematic approach for the use of data to support MRM and multi-scenario analysis. First, the study developed and examined approaches for selecting one or more representative days for the analysis, considering the variability in travel conditions throughout the year based on cluster analysis. Second, this study developed and analyzed methods for using crowdsourced data vii to estimate origin-destination demands and link-level volumes for use as part of an MRM with consideration of the modeling scenario(s).

The assessment of the methods to select the representative day(s) utilizes statistical measures, in addition to measures and visualization techniques that are specific to traffic operations. The results of the assessment indicate that the utilization of the K-means clustering algorithm with four clusters and spatio-temporal segregation of the variables demonstrated superior performance over other tested approaches, such as the use of the Gaussian Mixture clustering algorithm and the use of different segregation levels. The study assessed methods for the use of third-party crowdsourced data from StreetLight (SL) as part of the Origin-Destination Matrix Estimation (ODME), which identifies the method resulting in the closest origin-destination demands to the original seed matrices and real-world link counts. The results of the study indicate that Method 3(b) produced the best performance, which utilized combined data from demand forecasting models, crowdsourced data, and traffic counts. Additionally, this study examined regression models between crowdsourced data and count station data developed for link-level estimation of the volumes. This study also examined the accuracy and transferability of the link-level estimation of the volumes to determine if the crowdsourced data combined with available volume data at several locations can be used to predict missing or unavailable volumes in different locations on different days and times within the network. Regression models produced low errors than the default SL estimates when hourly or daily traffic volumes were taken into account. For similar traffic conditions, the models predicted directional traffic volume close to the real-world value.

Identifier

FIDC010829

ORCID

0000-0003-3193-3092

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).