Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Electrical and Computer Engineering
First Advisor's Name
Malek Adjouadi
First Advisor's Committee Title
Committee chair
Second Advisor's Name
Ilker Yaylali
Second Advisor's Committee Title
committee member
Third Advisor's Name
Mercedes Cabrerizo
Third Advisor's Committee Title
Committee member
Fourth Advisor's Name
Berrin Tansel
Fourth Advisor's Committee Title
Committee member
Fifth Advisor's Name
Nezih Pala
Fifth Advisor's Committee Title
Committee member
Keywords
engineering
Date of Defense
7-1-2022
Abstract
This research introduces the development of a novel EEG recording system that is modular, batteryless, and wireless (untethered) with the supporting theoretical foundation in wireless communications and related design elements and circuitry. Its modular construct overcomes the EEG scaling problem and makes it easier for reconfiguring the hardware design in terms of the number and placement of electrodes and type of standard EEG system contemplated for use. In this development, portability, lightweight, and applicability to other clinical applications that rely on EEG data are sought. Due to printer tolerance, the 3D printed cap consists of 61 electrode placements. This recording capacity can however extend from 21 (as in the international 10-20 systems) up to 61 EEG channels at sample rates ranging from 250 to 1000 Hz and the transfer of the raw EEG signal using a standard allocated frequency as a data carrier. The main objectives of this dissertation are to (1) eliminate the need for heavy mounted batteries, (2) overcome the requirement for bulky power systems, and (3) avoid the use of data cables to untether the EEG system from the subject for a more practical and less restrictive setting.
Unpredictability and temporal variations of the EEG input make developing a battery-free and cable-free EEG reading device challenging. Professional high-quality and high-resolution analog front ends are required to capture non-stationary EEG signals at microvolt levels. The primary components of the proposed setup are the wireless power transmission unit, which consists of a power amplifier, highly efficient resonant-inductive link, rectification, regulation, and power management units, as well as the analog front end, which consists of an analog to digital converter, pre-amplification unit, filtering unit, host microprocessor, and the wireless communication unit. These must all be compatible with the rest of the system and must use the least amount of power possible while minimizing the presence of noise and the attenuation of the recorded signal
A highly efficient resonant-inductive coupling link is developed to decrease power transmission dissipation. Magnetized materials were utilized to steer electromagnetic flux and decrease route and medium loss while transmitting the required energy with low dissipation. Signal pre-amplification is handled by the front-end active electrodes. Standard bio-amplifier design approaches are combined to accomplish this purpose, and a thorough investigation of the optimum ADC, microcontroller, and transceiver units has been carried out. We can minimize overall system weight and power consumption by employing battery-less and cable-free EEG readout system designs, consequently giving patients more comfort and freedom of movement. Similarly, the solutions are designed to match the performance of medical-grade equipment. The captured electrical impulses using the proposed setup can be stored for various uses, including classification, prediction, 3D source localization, and for monitoring and diagnosing different brain disorders.
All the proposed designs and supporting mathematical derivations were validated through empirical and software-simulated experiments. Many of the proposed designs, including the 3D head cap, the wireless power transmission unit, and the pre-amplification unit, are already fabricated, and the schematic circuits and simulation results were based on Spice, Altium, and high-frequency structure simulator (HFSS) software. The fully integrated head cap to be fabricated would require embedding the active electrodes into the 3D headset and applying current technological advances to miniaturize some of the design elements developed in this dissertation.
Identifier
FIDC010896
ORCID
https://orcid.org/
0000-0001-5591-8714
Recommended Citation
Sharafi, Mahmoud, "A Novel Power-Efficient Wireless Multi-channel Recording System for the Telemonitoring of Electroencephalography (EEG)" (2022). FIU Electronic Theses and Dissertations. 5091.
https://digitalcommons.fiu.edu/etd/5091
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).