Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Civil Engineering
First Advisor's Name
Mohammed Hadi
First Advisor's Committee Title
Committee chair
Second Advisor's Name
Albert Gan
Second Advisor's Committee Title
Committee member
Third Advisor's Name
Xia Jin
Third Advisor's Committee Title
Committee member
Fourth Advisor's Name
Priyanka Alluri
Fourth Advisor's Committee Title
Committee member
Fifth Advisor's Name
Florence George
Fifth Advisor's Committee Title
Committee member
Keywords
Hardware-in-the-Loop Simulation, Connected Vehicle, Actuated Signal Controller, Red-Light Violation Warning, Assured Green Period, Calibration
Date of Defense
3-9-2022
Abstract
Understanding the safety and mobility impacts of Connected Vehicle (CV) applications is critical for ensuring effective implementations of these applications. This dissertation provides an assessment of the safety and mobility impacts of the Red-Light Violation Warning (RLVW), a CV-based application at signalized intersections, under pre-timed signal control and semi-actuated signal control utilizing Emulator-in-the-loop (EILS), Software-in-the-loop (SILS), and Hardware-in-the-loop simulation (HILS) environments. Modern actuated traffic signal controllers contain several features with which controllers can provide varying green intervals for actuated phases, skip phases, and terminate phases depending on the traffic demand fluctuation from cycle to cycle. With actuated traffic signal operations, there is uncertainty in the end-of-green information provided to the vehicles using CV messages. The RLVW application lacks accurate input information about when exactly a phase is going to be terminated since this termination occurs when a gap of a particular length is encountered at the detector. This study compares the results obtained with the use of these three aforementioned simulation platforms and how the use of the platforms impacts the assessed performance of the modeled CV application. In addition, the study investigates using HILS and a method to provide an Assured Green Period (AGP) which is a definitive time when the green interval will end to mitigate the uncertainties associated with the green termination and to improve the performance of the CV application.
The study results showed that in the case of pre-timed signal control, there are small differences in the assessed performance when using the three simulated platforms. However, in the case of the actuated control, the utilization of EILS showed significantly different results compared to the utilization of the SILS and the HILS platforms. The use of the SILS and the HILS platforms produced similar results. The differences can be attributed to the variations in the time lag between vehicle detection and the use of this information between the EILS and the other two platforms. In addition, the results showed that the reduction in red-light running due to RLVW was significantly higher with pre-timed control compared to the reduction with semi-actuated control. The reason is the uncertainty in the end-of-green intervals provided in the messages communicated to the vehicles, as stated above. In the case of semi-actuated control, the results showed that the safety benefits of the RLVW without the use of AGP were limited. On the other hand, the study results showed that by introducing the AGP, the RLVW can reduce the number of red-light running events at signalized intersections by approximately 92% with RLVW utilization of 100%. However, the results show that the application of the AGP, as applied and assessed in this dissertation, can have increased stopped delay and approach delay under congested traffic conditions. This issue will need to be further investigated to determine the optimal setting of the AGP considering both mobility and safety impacts.
Identifier
FIDC010494
ORCID
https://orcid.org/0000-0001-9707-1523
Recommended Citation
Arafat, Mahmoud, "Hardware-in-the-Loop Simulation to Evaluate the Performance and Constraints of the Red-light Violation Warning Application on Arterial Roads" (2022). FIU Electronic Theses and Dissertations. 4929.
https://digitalcommons.fiu.edu/etd/4929
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).