Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Electrical and Computer Engineering
First Advisor's Name
Ou Bai
First Advisor's Committee Title
Committee chair
Second Advisor's Name
Armando Barreto
Second Advisor's Committee Title
Committee member
Third Advisor's Name
Jean Andrian
Third Advisor's Committee Title
Committee member
Fourth Advisor's Name
Hai Deng
Fourth Advisor's Committee Title
Committee member
Fifth Advisor's Name
Wei-Chiang Lin
Fifth Advisor's Committee Title
Committee member
Keywords
Brain-computer interface, rehabilitation, volitional control, affective computing, environmental awareness, electroencephalography, biomedical signal processing, machine learning, deep learning, computer vision, neuroengineering.
Date of Defense
3-10-2022
Abstract
Early and reliable prediction of user’s intention to change locomotion mode or speed is critical for a smooth and natural lower limb prosthesis. Meanwhile, incorporation of explicit environmental feedback can facilitate context aware intelligent prosthesis which allows seamless operation in a variety of gait demands. This dissertation introduces environmental awareness through computer vision and enables early and accurate prediction of intention to start, stop or change speeds while walking. Electromyography (EMG), Electroencephalography (EEG), Inertial Measurement Unit (IMU), and Ground Reaction Force (GRF) sensors were used to predict intention to start, stop or increase walking speed. Furthermore, it was investigated whether external emotional music stimuli could enhance the predictive capability of intention prediction methodologies. Application of advanced machine learning and signal processing techniques on pre-movement EEG resulted in an intention prediction system with low latency, high sensitivity and low false positive detection. Affective analysis of EEG suggested that happy music stimuli significantly (p
Identifier
FIDC010497
ORCID
0000-0003-3496-4767
Previously Published In
Hasan, S.S. and Bai, O., 2021, October. VMD-WSST: A Combined BCI Algorithm to Predict Self-paced Gait Intention. In 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 3188-3193). IEEE.
Hasan, S.S., Marquez, J.S., Siddiquee, M.R., Fei, D.Y. and Bai, O., 2021. Preliminary Study on Real-time Prediction of Gait Acceleration Intention from VolitionAssociated EEG Patterns. IEEE Access, 9, pp.62676-62686.
Hasan, S.S., Siddiquee, M.R., Atri, R., Ramon, R., Marquez, J.S. and Bai, O., 2020. Prediction of gait intention from pre-movement EEG signals: a feasibility study. Journal of neuroengineering and rehabilitation, 17(1), pp.1-16.
Hasan, S.S., Siddiquee, M.R., Marquez, J.S. and Bai, O., 2020. Enhancement of movement intention detection using EEG signals responsive to emotional music stimulus. IEEE Transactions on Affective Computing.
Hasan, S.S., Siddiquee, M.R. and Bai, O., 2020. Asynchronous prediction of human gait intention in a pseudo online paradigm using wavelet transform. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(7), pp.1623-1635.
Hasan, S.S., Siddiquee, M.R. and Bai, O., 2019, December. Supervised classification of EEG signals with score threshold regulation for pseudo-online asynchronous detection of gait intention. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA) (pp. 1476-1479). IEEE.
Recommended Citation
Hasan, S M Shafiul, "Volitional Control of Lower-limb Prosthesis with Vision-assisted Environmental Awareness" (2022). FIU Electronic Theses and Dissertations. 4926.
https://digitalcommons.fiu.edu/etd/4926
Included in
Applied Statistics Commons, Bioelectrical and Neuroengineering Commons, Biomedical Commons, Data Science Commons, Electrical and Electronics Commons, Signal Processing Commons
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).