Document Type

Thesis

Degree

Master of Science (MS)

Major/Program

Biology

First Advisor's Name

Steve Oberbauer

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Daniel Gann

Second Advisor's Committee Title

Committee member

Third Advisor's Name

Paulo Olivas

Third Advisor's Committee Title

Committee member

Keywords

Arctic, Moss, Reflectance, Spectral, Moisture, Drying, Sphagnum

Date of Defense

11-12-2021

Abstract

Mosses are a dominant understory component in the Arctic and because of sparse canopy cover, contribute to spectral signals used in remote sensing estimates of various ecologically important characteristics such as productivity, phenology, and vegetation mapping. However, little is known about their contributions to community level spectra or how moisture content influences those spectral signals. Unlike vascular plants, mosses cannot actively regulate moisture content and are highly susceptible to desiccation. Previous research has shown that moss reflectance is sensitive to tissue moisture content. Here, a lab-controlled drying experiment was conducted to identify the best spectral predictors of moisture content of moss as well as distinguishing characteristics of their spectral profile compared to vascular plants. Additionally, a pilot study tested whether moss could drive community-level reflectance in situ in response to short-term moisture changes.

Significant changes in the near infrared and short-wave infrared regions of moss spectra were observed in response to moisture content fluctuations and could be used to determine moisture content. Moisture indices derived from spectral reflectance were able to predict moisture content with a high degree of certainty. The red edge inflection point and slope obtained from derivative spectra were found to be good distinguishing characteristics between moss and vascular plant spectra for the purpose of classification. Lastly, moisture content of moss was shown to significantly drive community-level spectra where moss and vascular plants were interspersed. These findings demonstrate the need to consider whether mosses are present in a spectrally mixed signal and to be aware of moisture content and its effects on overall spectra. Given the influence that both mosses and moss moisture have on overall spectra, incorporating this once semi-forgotten understory component will be critical for better predictions and modeling of the changing Arctic ecosystem.

Identifier

FIDC010480

ORCID

0000-0002-9562-8209

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).