Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Chemistry
First Advisor's Name
Bruce McCord
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Shekhar Bhansali
Second Advisor's Committee Title
Committee Member
Third Advisor's Name
George Duncan
Third Advisor's Committee Title
Committee member
Fourth Advisor's Name
Jaroslava Miksovska
Fourth Advisor's Committee Title
Committee Member
Fifth Advisor's Name
Piero Gardinali
Fifth Advisor's Committee Title
Committee Member
Keywords
Biosensors, Opioids, Sweat sensing, Forensic Electrochemistry, Aptamers, Paper-based Sensing, Drug Forensics, Paper Electrodes, Nanomatericals, Lab on Chip
Date of Defense
11-10-2021
Abstract
Despite the many governmental and medicinal restrictions created to combat the opioid epidemic in the United States, opioid abuse and overdose rates continue to rise. The development of an aptamer-based voltammetric sensor and biosensor is described in this dissertation. The aim was to develop a low-cost, sensitive, and specific aptamer-based sensor for on-site, label-free determination of codeine and fentanyl in biological fluids. To do this, the surfaces of screen-printed carbon electrodes (SPCE) were modified with gold nanoparticles (AuNPs), followed by the addition of single-stranded DNA aptamers. These were covalently bound to the electrode surface. Operations of the sensors were collected using an electroactive solution such as ferrocyanate was aspirated onto the detector, producing a steady current due to oxidation at the electrode surface. Upon target binding, the DNA aptamers coalesce. The resultant complex decreases access to the surface due to steric hindrance with a concomitant decrease in signal. Diffusion of the electroactive solution to the electrode surface increased when more significant target drug concentrations were present in the sweat. The generated electrical current was collected and analyzed via square wave voltammetry and electrochemical impedance spectroscopy.
Applying this aptasensing approach to modified commercial SPCEs permitted the detection of nanomolar concentrations of codeine and fentanyl in biological fluids. After providing proof-of-concept with a commercial SPCE, a paper-based SPCE was developed for the aptasensing of opioids. The performance of the paper-based sensor produces a current approximately 2x less than the commercial disposable sensor. Ultimately, the fabrication and development of this novel biosensor for the detection of opioids present a novel strategy for opioid detection through the use of disposable, paper-based, screen-printed carbon electrodes. Furthermore, the low cost and convenience of this procedure should further aid the development of related screening methods for forensic and medical applications.
Identifier
FIDC010448
ORCID
https://orcid.org/0000-0003-2258-1718
Previously Published In
https://doi.org/10.1039/C8AY02080A
Creative Commons License
This work is licensed under a Creative Commons Attribution-No Derivative Works 4.0 License.
Recommended Citation
Cromartie, Rosa LaShantez, "Aptamer-based Voltammetric Biosensing for the detection of Codeine and Fentanyl in Sweat and Saliva" (2021). FIU Electronic Theses and Dissertations. 4847.
https://digitalcommons.fiu.edu/etd/4847
Included in
Analytical Chemistry Commons, Biochemistry Commons, Biomedical Commons, Electronic Devices and Semiconductor Manufacturing Commons, Investigative Techniques Commons, Medicinal-Pharmaceutical Chemistry Commons, Nanoscience and Nanotechnology Commons, Other Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons, Other Chemicals and Drugs Commons, Other Chemistry Commons, Pharmacology, Toxicology and Environmental Health Commons
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).