Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Electrical and Computer Engineering
First Advisor's Name
Arjuna Madanayake
First Advisor's Committee Title
Committee chair
Second Advisor's Name
Elias Alwan
Second Advisor's Committee Title
Committee member
Third Advisor's Name
Shubhendu Bhardwaj
Third Advisor's Committee Title
Committee member
Fourth Advisor's Name
Satheesh Venkatakrishnan
Fourth Advisor's Committee Title
Committee member
Fifth Advisor's Name
Todd Crowl
Fifth Advisor's Committee Title
Committee member
Keywords
electrical and electronics, signal processing, systems and communications
Date of Defense
3-25-2021
Abstract
There has been a constant increase in data-traffic and device-connections in mobile wireless communications, which led the fifth generation (5G) implementations to exploit mm-wave bands at 24/28 GHz. The next-generation wireless access point (6G and beyond) will need to adopt large-scale transceiver arrays with a combination of multi-input-multi-output (MIMO) theory and fully digital multi-beam beamforming. The resulting high gain array factors will overcome the high path losses at mm-wave bands, and the simultaneous multi-beams will exploit the multi-directional channels due to multi-path effects and improve the signal-to-noise ratio. Such access points will be based on electronic systems which heavily depend on the integration of RF electronics with digital signal processing performed in Field programmable gate arrays (FPGA)/ RF-system-on-chip (SoC).
This dissertation is directed towards the investigation and realization of fully-digital phased arrays that can produce wideband simultaneous multi-beams with FPGA or RF-SoC digital back-ends. The first proposed approach is a spatial bandpass (SBP) IIR filter-based beamformer, and is based on the concepts of space-time network resonance. A 2.4 GHz, 16-element array receiver, has been built for real-time experimental verification of this approach. The second and third approaches are respectively based on Discrete Fourier Transform (DFT) theory, and a lens plus focal planar array theory. Lens based approach is essentially an analog model of DFT. These two approaches are verified for a 28 GHz 800 MHz mm-wave implementation with RF-SoC as the digital back-end. It has been shown that for all proposed multibeam beamformer implementations, the measured beams are well aligned with those of the simulated. The proposed approaches differ in terms of their architectures, hardware complexity and costs, which will be discussed as this dissertation opens up.
This dissertation also presents an application of multi-beam approaches for RF directional sensing applications to explore white spaces within the spatio-temporal spectral regions. A real-time directional sensing system is proposed to capture the white spaces within the 2.4 GHz Wi-Fi band.
Further, this dissertation investigates the effect of electro-magnetic (EM) mutual coupling in antenna arrays on the real-time performance of fully-digital transceivers. Different algorithms are proposed to uncouple the mutual coupling in digital domain. The first one is based on finding the MC transfer function from the measured S-parameters of the antenna array and employing it in a Frost FIR filter in the beamforming backend. The second proposed method uses fast algorithms to realize the inverse of mutual coupling matrix via tridiagonal Toeplitz matrices having sparse factors. A 5.8 GHz 32-element array and 1-7 GHz 7-element tightly coupled dipole array (TCDA) have been employed to demonstrate the proof-of-concept of these algorithms.
Identifier
FIDC009769
ORCID
https://orcid.org/0000-0003-2240-1924
Recommended Citation
Pulipati, Sravan kumar, "Design and Realization of Fully-digital Microwave and Mm-wave Multi-beam Arrays with FPGA/RF-SOC Signal Processing" (2021). FIU Electronic Theses and Dissertations. 4652.
https://digitalcommons.fiu.edu/etd/4652
Included in
Electrical and Electronics Commons, Signal Processing Commons, Systems and Communications Commons
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).