Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Electrical and Computer Engineering
First Advisor's Name
Dr. Shekhar Bhansali
First Advisor's Committee Title
Committee chair
Second Advisor's Name
Dr. Jean Andrian
Second Advisor's Committee Title
Committee member
Third Advisor's Name
Dr. Shubhendu Bhardwaj
Third Advisor's Committee Title
Committee member
Fourth Advisor's Name
Dr. Bruce McCord
Fourth Advisor's Committee Title
Committee member
Fifth Advisor's Name
Dr. Orlin Velev
Fifth Advisor's Committee Title
Committee member
Sixth Advisor's Name
Dr. Michael Daniele
Sixth Advisor's Committee Title
Committee member
Keywords
Wearable sensors, wound monitoring, electrochemical sensing, dynamic variability
Date of Defense
3-25-2021
Abstract
This dissertation studies the effect of biofluid dynamics on the electrochemical response of a wearable sensor for monitoring of chronic wounds. The research investigates various dynamic in vivo parameters and correlates them with experimentally measured behavior with wound monitoring as a use case. Wearable electrochemical biosensors suffer from several unaddressed challenges, like stability and sensitivity, that need to be resolved for obtaining accurate data. One of the major challenges in the use of these sensors is continuous variation in biofluid composition. Wound healing is a dynamic process with wound composition changing continuously. This dissertation investigates the effects of several in vivo biochemical and environmental parameters on the sensor response to establish actionable correlations. Real-time assessment of wound healing was carried out through longitudinal monitoring of uric acid and other wound fluid characteristics. A textile sensor was designed using a simple fabrication approach combining conductive inks with a polymeric substrate, for conformal contact with the wound bed. A −1 cm−2, establishing the applicability of the sensor for measurements in the physiologically relevant range. The sensor was also found to be stable for a period of 3 days when subjected to physiological and elevated temperatures (37oC and 40oC) confirming its relevance for long-term monitoring. A direct correlation between sensor response and the dynamic parameters was seen, with the results showing a ~20% deviation from the accurate UA reading. The results confirmed that as a consequence of these parameters temporally changing in the wound environment, the sensor response will be altered. The work develops mathematical models correlating this effect on sensor response to allow for real-time sensor calibration. The clinical validation studies established the feasibility of UA measurement by the developed electrochemical sensor and derive correlations between the wound chronicity and UA levels. The protocols developed in this work for the design, fabrication, and calibration of the sensor to correct for the dynamic in vivo behavior can be extended to any wearable sensor for improved accuracy.
Identifier
FIDC009698
ORCID
https://orcid.org/0000-0003-1655-9389
Previously Published In
1. Songkakul, Tanner, et al. "Towards a long-term multi-site electrochemical wound monitoring system." 2019 IEEE SENSORS. IEEE, 2019.
2. Bhushan, Pulak, et al. "Biosensor for Monitoring Uric Acid in Wound and Its Proximity: A Potential Wound Diagnostic Tool." Journal of The Electrochemical Society 166.10 (2019): B830.
3. Bhushan, Pulak, et al. "Toxicity assessment of wearable wound sensor constituents on keratinocytes." Toxicology in Vitro 58 (2019): 170-177.
4. RoyChoudhury, Sohini, et al. "Multimodal Enzymatic Sensing for Continuous Wound Monitoring." ECS Transactions 88.1 (2018): 419.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License
Recommended Citation
Bhushan, Pulak, "Correlating the Effect of Dynamic Variability in the Sensor Environment on Sensor Design" (2021). FIU Electronic Theses and Dissertations. 4633.
https://digitalcommons.fiu.edu/etd/4633
Included in
Biomedical Commons, Biomedical Devices and Instrumentation Commons, Electrical and Electronics Commons
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).