Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Chemistry
First Advisor's Name
Bruce R. McCord
First Advisor's Committee Title
committee chair
Second Advisor's Name
Yesim Darici
Second Advisor's Committee Title
committee member
Third Advisor's Name
Anthony P. DeCaprio
Third Advisor's Committee Title
committee member
Fourth Advisor's Name
Alexander M. Mebel
Fourth Advisor's Committee Title
committee member
Fifth Advisor's Name
Jaroslava Mikšovská
Fifth Advisor's Committee Title
committee member
Sixth Advisor's Name
Stanislaw F. Wnuk
Sixth Advisor's Committee Title
committee member
Keywords
SERS, adsorption, surface chemistry, nanostars, DFT, nanoalloys, citrate, colloidal stability, noble metal nanoparticles, drug detection
Date of Defense
11-2-2020
Abstract
Surface Enhanced Raman Spectroscopy (SERS) is an analytical technique in which nanostructured substrates amplify the inherently weak Raman signal of an adsorbed species by several orders of magnitude, enabling the detection of trace compounds, up to the single molecule level. While this may be an exceptional tool for any analytical scientist, SERS is at present relegated to the role of academic sensation, and is underutilized in everyday analytical practice. The SERS community is increasingly attributing this setback to a poor understanding of nanoscale surfaces and their chemical environment; since molecular adsorption at the nanostructured surface enables SERS detection, uncertainty about what happens at the surface makes SERS experiments convoluted and often inaccessible. Therefore, there is a pressing need to further nanoscale surface chemistry studies: they are the key to effect the transition of SERS from academic sensation to benchmark technique for routine diagnostics.
The present research takes this call by developing a library of SERS-active bimetallic nanostars, and utilizing them to systematically study the interplay between colloidal stability and SERS performance. Particular emphasis is given to elucidating the adsorption process of stabilizers to the nanoparticle surface, which was studied utilizing a vi multi-analytical approach. In addition, DFT calculations were performed in support of mechanistic and structural hypotheses. A population of structures for a simplified all-gold cluster system were obtained at the B3LYP/LANL2DZ level of theory, using both explicit solvent molecules and the continuum solvent model SMD.
The experimental results suggest that stabilizers such as citrate are weakly chemisorbed to the bimetallic surface, and have Kad that make them easily displaceable by drug analytes. The DFT results provided a population of possible gold-citrate structures, which show potential significance of gold-ligated water in the adsorption of carboxylates. Preliminary results on a bimetallic system suggest a similar trend as well.
This multi-analytical, theory-assisted approach to colloid development allowed for the formulation of a set of well characterized SERS-active colloidal surfaces, capable of providing a high level of surface control during SERS measurements. This ultimately allows for straightforward protocol development, which was demonstrated in the detection of forensically relevant analytes, such as opioids.
Identifier
FIDC009204
ORCID
https://orcid.org/0000-0003-3077-5029
Previously Published In
Deriu, C.; Conticello, I.; Mebel, A.M.; McCord, B. Micro Solid Phase Extraction Surface-Enhanced Raman Spectroscopy (µ-SPE/SERS) Screening Test for the Detection of the Synthetic Cannabinoid JWH-018 in Oral Fluid. Anal. Chem., 2019, 91(7), 4780–4789.
Wang, L.; Deriu, C.; Wu, W.; Mebel, A.M.; McCord, B. Surface-enhanced Raman spectroscopy, Raman, and density functional theoretical analyses of fentanyl and six analogs. J. Raman Spectrosc., 2019, 50, 1405–1415.
Deriu, C.; Paudyal, J.; Bhardwaj, V.; McCord, B. SERS for the Forensic Toxicological Screening of Drugs. In Surface-Enhanced Raman Spectroscopy: Methods, Analysis and Research; Bhardwaj, V., McGoron, A. J., Eds.; Nova Science Publishers: Hauppauge, NY., 2019.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Recommended Citation
Deriu, Chiara, "Surface Enhanced Raman Spectroscopy (SERS) as a Nanoscale Adsorption Phenomenon: Development of Tailored Nanomaterials for Applications in Drug Detection" (2020). FIU Electronic Theses and Dissertations. 4583.
https://digitalcommons.fiu.edu/etd/4583
Included in
Analytical Chemistry Commons, Materials Chemistry Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).