Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Electrical Engineering
First Advisor's Name
Kemal Akkaya
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
A. Selcuk Uluagac
Second Advisor's Committee Title
Committee Member
Third Advisor's Name
Ahmed S. Ibrahim
Third Advisor's Committee Title
Committee Member
Fourth Advisor's Name
Jason Liu
Fourth Advisor's Committee Title
Committee Member
Keywords
Smart Grid, Key Exchange, Public Key Infrastructure (PKI), AMI, IoT
Date of Defense
7-2-2020
Abstract
With the increasing digitization of different components of Smart Grid by incorporating smart(er) devices, there is an ongoing effort to deploy them for various applications. However, if these devices are compromised, they can reveal sensitive information from such systems. Therefore, securing them against cyber-attacks may represent the first step towards the protection of the critical infrastructure. Nevertheless, realization of the desirable security features such as confidentiality, integrity and authentication relies entirely on cryptographic keys that can be either symmetric or asymmetric. A major need, along with this, is to deal with managing these keys for a large number of devices in Smart Grid. While such key management can be easily addressed by transferring the existing protocols to Smart Grid domain, this is not an easy task, as one needs to deal with the limitations of the current communication infrastructures and resource-constrained devices in Smart Grid. In general, effective mechanisms for Smart Grid security must guarantee the security of the applications by managing (1) key revocation; and (2) key exchange. Moreover, such management should be provided without compromising the general performance of the Smart Grid applications and thus needs to incur minimal overhead to Smart Grid systems. This dissertation aims to fill this gap by proposing specialized key management techniques for resource and communication constrained Smart Grid environments. Specifically, motivated by the need of reducing the revocation management overhead, we first present a distributed public key revocation management scheme for Advanced Metering Infrastructure (AMI) by utilizing distributed hash trees (DHTs). The basic idea is to enable sharing of the burden among smart meters to reduce the overall overhead. Second, we propose another revocation management scheme by utilizing cryptographic accumulators, which reduces the space requirements for revocation information significantly. Finally, we turn our attention to symmetric key exchange problem and propose a 0-Round Trip Time (RTT) message exchange scheme to minimize the message exchanges. This scheme enables a lightweight yet secure symmetric key-exchange between field devices and the control center in Smart Gird by utilizing a dynamic hash chain mechanism. The evaluation of the proposed approaches show that they significantly out-perform existing conventional approaches.
Identifier
FIDC009173
Previously Published In
2020, “Communication-efficient Certificate Revocation Management for AdvancedMetering Infrastructure”, Mumin Cebe, Kemal Akkaya.Elsevier Future Generation Computer System (Accepted)
2018, “Efficient certificate revocation management schemes for IoT-based advancedmetering infrastructures in smart cities”, Mumin Cebe, Kemal Akkaya.Journal of AdHoc Networks, Volume 92
.
Recommended Citation
cebe, mumin, "Efficient Key Management Schemes for Smart Grid" (2020). FIU Electronic Theses and Dissertations. 4460.
https://digitalcommons.fiu.edu/etd/4460
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).