Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Computer Science
First Advisor's Name
S. S. Iyengar
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Niki Pissinou
Second Advisor's Committee Title
Committee Member
Third Advisor's Name
Jean Andrian
Third Advisor's Committee Title
Committee Member
Fourth Advisor's Name
N. R. Sunitha
Fourth Advisor's Committee Title
Committee Member
Fifth Advisor's Name
Deng Pan
Fifth Advisor's Committee Title
Committee Member
Sixth Advisor's Name
Leonardo Bobadilla
Sixth Advisor's Committee Title
Committee Member
Keywords
Click Fraud, Online Advertisement, In-app Advertisement, Machine Learning
Date of Defense
9-30-2019
Abstract
Click Fraud is the fraudulent act of clicking on pay-per-click advertisements to increase a site’s revenue, to drain revenue from the advertiser, or to inflate the popularity of content on social media platforms. In-app advertisements on mobile platforms are among the most common targets for click fraud, which makes companies hesitant to advertise their products. Fraudulent clicks are supposed to be caught by ad providers as part of their service to advertisers, which is commonly done using machine learning methods. However: (1) there is a lack of research in current literature addressing and evaluating the different techniques of click fraud detection and prevention, (2) threat models composed of active learning systems (smart attackers) can mislead the training process of the fraud detection model by polluting the training data, (3) current deep learning models have significant computational overhead, (4) training data is often in an imbalanced state, and balancing it still results in noisy data that can train the classifier incorrectly, and (5) datasets with high dimensionality cause increased computational overhead and decreased classifier correctness -- while existing feature selection techniques address this issue, they have their own performance limitations. By extending the state-of-the-art techniques in the field of machine learning, this dissertation provides the following solutions: (i) To address (1) and (2), we propose a hybrid deep-learning-based model which consists of an artificial neural network, auto-encoder and semi-supervised generative adversarial network. (ii) As a solution for (3), we present Cascaded Forest and Extreme Gradient Boosting with less hyperparameter tuning. (iii) To overcome (4), we propose a row-wise data reduction method, KSMOTE, which filters out noisy data samples both in the raw data and the synthetically generated samples. (iv) For (5), we propose different column-reduction methods such as multi-time-scale Time Series analysis for fraud forecasting, using binary labeled imbalanced datasets and hybrid filter-wrapper feature selection approaches.
Identifier
FIDC007836
ORCID
0000-0001-9606-0128
Previously Published In
- G. S. Thejas, Kianoosh G. Boroojeni, Kshitij Chandna, Isha Bhatia, S. S. Iyengar, and N. R. Sunitha. 2019. Deep Learning-based Model to Fight Against Ad Click Fraud. In Proceedings of the 2019 ACM Southeast Conference (ACM SE '19). ACM, New York, NY, USA, 176-181. DOI: https://doi.org/10.1145/3299815.3314453
- G. S. Thejas, S. R. Joshi, S. S. Iyengar, N. R. Sunitha and P. Badrinath, "Mini-Batch Normalized Mutual Information: A Hybrid Feature Selection Method," in IEEE Access, vol. 7, pp. 116875-116885, 2019. doi: 10.1109/ACCESS.2019.2936346
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Recommended Citation
Gubbi Sadashiva, Thejas, "Click Fraud Detection in Online and In-app Advertisements: A Learning Based Approach" (2019). FIU Electronic Theses and Dissertations. 4359.
https://digitalcommons.fiu.edu/etd/4359
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).