Document Type

Dissertation

Degree

Doctor of Philosophy (PhD)

Major/Program

Biomedical Sciences

First Advisor's Name

Kalai Mathee

First Advisor's Committee Title

Committee chair

Second Advisor's Name

Jeremy Chambers

Second Advisor's Committee Title

Committee member

Third Advisor's Name

Yukching TseDinh

Third Advisor's Committee Title

Committee member

Fourth Advisor's Name

Marisela Agudelo

Fourth Advisor's Committee Title

Committee member

Fifth Advisor's Name

Shahriar Mobashery

Fifth Advisor's Committee Title

Committee member

Keywords

beta-lactams, PA4393, PA4218, PA1085, scaffold library

Date of Defense

5-25-2018

Abstract

The threat of antibiotic resistance and the global rise of pan-resistant bacteria is a serious concern at present. Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen is frequently associated with multi and pan-drug resistant infections. This research delves into the mechanism of resistance to a class of drugs known as the β-lactams. AmpC β-lactamase encoded chromosomally in P. aeruginosa is one of the predominant causes of resistance to many β-lactams. Previous research on this pathway identified the AmpC regulatory protein - AmpR and elaborated on its regulon in P. aeruginosa. In this dissertation, further investigation in the mechanisms associated with AmpR regulation of AmpC and its connection with the cell-wall recycling pathway is explored. Cell-wall recycling, a common phenomenon in both Gram-positive and negative bacteria is investigated in some detail in P. aeruginosa for the first time. The identity of the cell-wall recycling products or muropeptides in P. aeruginosa is elucidated. Around 20 distinct muropeptides were identified through liquid chromatography/mass spectrometry analyses of bacterial extracts. Furthermore, iv the muropeptide effector of AmpR that is instrumental in the activation of this transcription factor is identified. The role of two permeases AmpG and AmpP in antibiotic resistance and cell-wall recycling are also investigated by comparing antibiotic susceptibility and muropeptide profile of the isogenic mutants of ampG and ampP with the wild-type PAO1. Along with investigating permeases, the role of a putative N-acetylglucosaminidase FlgJ is also investigated. Finally, keeping in mind the broad role of AmpR in regulating P. aeruginosa virulence and antibiotic resistance, we try to identify small -molecule inhibitors for AmpR. In our effort to identify inhibitors, a novel reporter-based screening assay is developed. In summary, this dissertation increases our understanding of cell-wall recycling and mechanisms of β-lactam resistance and attempts at establishing novel-antibacterial targets and inhibitors.

Identifier

FIDC006816

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).