Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Chemistry
First Advisor's Name
Rudolf Jaffé
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Yong Cai
Second Advisor's Committee Title
Committee Member
Third Advisor's Name
Piero Gardinali
Third Advisor's Committee Title
Committee Member
Fourth Advisor's Name
Anthony DeCaprio
Fourth Advisor's Committee Title
Committee Member
Fifth Advisor's Name
John Kominoski
Fifth Advisor's Committee Title
Committee Member
Keywords
Dissolved Black Carbon, Dissolved Organic Matter, Rivers, Biogeochemistry, Land Use
Date of Defense
5-11-2018
Abstract
Black carbon (BC) is an organic residue formed primarily from biomass burning (e.g., wildfires) and fossil fuel combustion. Until recently, it was understood that BC was highly recalcitrant and stabilized in soils over millennial scales. However, a fraction of the material can be solubilized and transported in fluvial systems as dissolved BC (DBC), which represents on average 10% of the global export of dissolved organic carbon (DOC) from rivers to coastal systems. The composition of DBC controls its reactivity, and it has been linked with a variety of in-stream processes that induce both carbon sequestration and evasion of CO₂ from aquatic systems, which suggest DBC may have a significant contribution within the global carbon cycle. The primary objectives for the thesis were to elucidate environmental factors that control the fate and transport of DBC in fluvial systems. Ultra-high resolution mass spectrometry was used to characterize DBC on a molecular scale whereas benzenepolycarboxylic acids were used to quantify and characterize BC in both dissolved and particulate phases (PBC). Sinks for polycondensed DBC were linked to a series of in-stream biogeochemical processes (e.g., photodegradation, metal interactions); whereas photooxidation of particulate charcoal led to production of DBC, suggesting photodissolution as a previously unrecognized source of DBC to fluvial systems. Coupling of DBC with PBC, however, was hydrologically constrained with sources varying over temporal scales and land use regimes. For DBC in particular, an enrichment of heteroatomic functionality was observed as a function of anthropogenic land use. Furthermore, land use coupled with stream order (a proxy for in-stream processing as defined by the River Continuum Concept) could explain significant spatial variability in organic matter (e.g., DOC) composition within an anthropogenically impacted system. With an increase in wildfire frequency projected with on-going climate change trends, parallel projections for increases in BC production are also expected. Furthermore, conversion of natural landscapes for urban and agricultural practices is also expected to continue in the coming decades. Thus, it is imperative to reach a comprehensive understanding of processes regulating the transport of DBC in fluvial systems with efforts to constrain future BC budgets and climate change models.
Identifier
FIDC006880
Recommended Citation
Roebuck, J. Alan Jr., "Environmental Dynamics of Dissolved Organic Matter and Dissolved Black Carbon in Fluvial Systems: Effects of Biogeochemistry and Land Use" (2018). FIU Electronic Theses and Dissertations. 3755.
https://digitalcommons.fiu.edu/etd/3755
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).