Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Electrical Engineering
First Advisor's Name
Stavros Georgakopoulos
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Nezih Pala
Second Advisor's Committee Title
Committee Member
Third Advisor's Name
Taylor Ware
Third Advisor's Committee Title
Committee Member
Fourth Advisor's Name
Jean Andrian
Fourth Advisor's Committee Title
Committee Member
Fifth Advisor's Name
Félix Miranda
Fifth Advisor's Committee Title
Committee Member
Sixth Advisor's Name
Kinzy Jones
Sixth Advisor's Committee Title
Committee Member
Keywords
Reconfigurable Antennas, Shape Memory Polymers, Liquid Crystalline Elastomers, Passive Temperature Sensor
Date of Defense
3-29-2018
Abstract
This dissertation demonstrates the design of reversibly self-morphing novel liquid crystalline elastomer (LCE) antennas that can dynamically change electromagnetic performance in response to temperature. This change in performance can be achieved by programming the shape change of stimuli-responsive (i.e., temperature-responsive) LCEs, and using these materials as substrates for reconfigurable antennas. Existing reconfigurable antennas rely on external circuitry such as Micro-Electro-Mechanical-Systems (MEMS) switches, pin diodes, and shape memory alloys (SMAs) to reconfigure their performance. Antennas using MEMS or diodes exhibit low efficiency due to the losses from these components. Also, antennas based on SMAs can change their performance only once as SMAs response to the stimuli and is not reversible. Flexible electronics are capable of morphing from one shape to another using various techniques, such as liquid metals, hydrogels, and shape memory polymers.
LCE antennas can reconfigure their electromagnetic performance, (e.g., frequency of operation, polarization, and radiation pattern) and enable passive (i.e., battery-less) temperature sensing and monitoring applications, such as passive radio frequency identification device (RFID) sensing tags. Limited previous work has been performed on shape-changing antenna structures based on LCEs. To date, self-morphing flexible electronics, including antennas, which rely on stimuli-responsive LCEs that reversibly change shape in response to temperature changes, have not been previously explored. Here, LCE antennas will be studied and developed. Also, the metallization of LCEs with different metal conductors and their fabrication process, by either electron beam (E-Beam) evaporation or optical gluing of the metal film will be observed. The LCE material can have a significant impact on sensing applications due to its reversible actuation that can enable a sensor to work repeatedly. This interdisciplinary research (material polymer science and electrical engineering) is expected to contribute to the development of morphing electronics, including sensors, passive antennas, arrays, and frequency selective surfaces (FSS).
Identifier
FIDC006536
Recommended Citation
Gibson, John, "Reconfigurable Antennas Using Liquid Crystalline Elastomers" (2018). FIU Electronic Theses and Dissertations. 3706.
https://digitalcommons.fiu.edu/etd/3706
Included in
Electrical and Electronics Commons, Electromagnetics and Photonics Commons, Polymer and Organic Materials Commons, Systems and Communications Commons
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).