Document Type

Dissertation

Degree

Doctor of Philosophy (PhD)

Major/Program

Electrical Engineering

First Advisor's Name

Stavros. V. Georgakopoulos

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Nezih Pala

Second Advisor's Committee Title

Committee Member

Third Advisor's Name

Jean H. Andrian

Third Advisor's Committee Title

Committee Member

Fourth Advisor's Name

Berrin Tansel

Fourth Advisor's Committee Title

Committee Member

Fifth Advisor's Name

Kang Yen

Fifth Advisor's Committee Title

Committee Member

Keywords

Antenna, Array, Collapsible, Conical, Deployable, Helix, Origami, Reconfigurable, Reflector, Spherical.

Date of Defense

3-21-2018

Abstract

Antennas play a crucial role in communication systems since they are the transmitting/receiving elements that transition information from guided transmission to open-space propagation. Antennas are used in many different applications such as aerospace communications, mobile phones, TVs and radios. Since the dimensions of antennas are usually physically proportional to the wavelength at their operating frequencies, it is important to develop large antennas and arrays that can be stowed compactly and easily deployed. Also, it is important to minimize the number of antennas on a platform by developing multifunctional antennas.

The first aim of this research is to develop new deployable, collapsible, light-weight and robust reconfigurable antennas based on origami principles. All designs will be validated through simulations and measurements. Paper as well as other substrates, such as, Kapton and fabric, will be used to develop our origami antennas. The second aim of this research is to derive integrated analytical and simulation models for designing optimal origami antennas for various applications, such as, satellite or ground communications.

This dissertation presents research on origami antennas for novel reconfigurable communication systems. New designs of reconfigurable monofilar, bifilar and quadrifilar antennas based on origami cylinders are developed and validated. Novel fabrication methods of origami antennas are presented with detailed geometrical analysis. Furthermore, multi-radii origami antennas are proposed, analyzed, fabricated and validated and they exhibit improved circular polarization performance and wide bandwidths. An actuation mechanism is designed for these antennas. For the first time, a low-cost and lightweight reconfigurable origami antenna with a reflector is developed here. In addition, an array is developed using this antenna as its element. Finally, a kresling conical spiral antenna and a spherical helical antenna are designed with mode reconfigurabilities.

Identifier

FIDC004091

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).