Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Chemistry
First Advisor's Name
Yuk-Ching Tse-Dinh
First Advisor's Committee Title
Major Professor
Second Advisor's Name
David Becker
Second Advisor's Committee Title
committee member
Third Advisor's Name
Niclas Engene
Third Advisor's Committee Title
committee member
Fourth Advisor's Name
Fenfei Leng
Fourth Advisor's Committee Title
committee member
Fifth Advisor's Name
Yuan Liu
Fifth Advisor's Committee Title
committee member
Keywords
antibiotic resistance, topoisomerase, drug discovery
Date of Defense
11-14-2017
Abstract
Multi-drug resistance in bacterial pathogens has become a global health crisis. Each year, millions of people worldwide are infected with bacterial strains that are resistant to currently available antibiotics. Diseases such as tuberculosis, pneumonia, and gonorrhea have become increasingly more difficult to treat. It is essential that novel drugs and cellular targets be identified in order to treat this resistance. Bacterial topoisomerase IA is a novel drug target that is essential for cellular growth. As it has never been targeted by existing antibiotics, it is an attractive target. Topoisomerase IA is responsible for relieving torsional strain on DNA by relaxing supercoiled DNA following processes such as replication and transcription. The aim of this study is to find novel compounds that can be developed as leads for antibiotics targeting bacterial type IA topoisomerase. Various approaches were used in order to screen thousands of compounds against bacterial type IA topoisomerases, including mixture-based screening and virtual screening. In the mixture-based screen, scaffold mixtures were tested against the M. tuberculosis topoisomerase I enzyme and subsequently optimized for maximum potency and selectivity. The optimized compounds were effective at inhibiting the enzyme at low micromolar concentrations, as well as killing the tuberculosis bacteria. In a virtual screen, libraries with hundreds of thousands of compounds were screened against the E. coli and M. tuberculosis topoisomerase I crystal structures in order to find new classes of drugs. The top hits were effective at inhibiting the enzymes, as well as preventing the growth of M. smegmatis cells in the presence of efflux pump inhibitors. Organometallic complexes containing Cu(II) or Co(III) were tested as well against various topoisomerases in order to determine their selectivity. We discovered a poison for human type II topoisomerase that has utility as an anticancer agent, as it killed even very resistant cell lines of breast and colon cancer. The Co(III) complexes were found to inhibit the bacterial topoisomerase I very selectively over other topoisomerases. The various methods of drug discovery utilized here have been successful at identifying new classes of compounds that may be further developed into antibiotic drugs that specifically target bacterial type IA topoisomerases.
Identifier
FIDC004005
Recommended Citation
Sandhaus, Shayna, "Drug Candidate Discovery: Targeting Bacterial Topoisomerase I Enzymes for Novel Antibiotic Leads" (2017). FIU Electronic Theses and Dissertations. 3561.
https://digitalcommons.fiu.edu/etd/3561
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).