Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Chemistry
First Advisor's Name
Stanislaw F. Wnuk
First Advisor's Committee Title
Major Professor
Second Advisor's Name
David Chatfield
Second Advisor's Committee Title
committee member
Third Advisor's Name
Watson Lees
Third Advisor's Committee Title
committee member
Fourth Advisor's Name
Kevin O'Shea
Fourth Advisor's Committee Title
committee member
Fifth Advisor's Name
John Makemson
Fifth Advisor's Committee Title
committee member
Keywords
gemcitabine, silicon-fluoride PET, 18F PET
Date of Defense
6-26-2017
Abstract
Gemcitabine (dFdC) is an effective chemotherapeutic nucleoside analogue for treatment of cancers and solid tumors. Gemcitabine’s chemotherapeutic effect is limited by its rapid intracellular deamination by cytidine deaminase into the inactive uracil derivative. Herein, I designed and synthesized two sets of gemcitabine analogues: i) a 4-N-alkyl gemcitabine analogue containing a β-keto sulfonate moiety, and ii) clickable analogues possessing silicon-fluoride acceptor building blocks. Both of these sets of analogues undergo efficient fluorination, including fluorination protocols compatible with 18F labeling.
The synthesis of the 4-N-alkyl gemcitabine analogue bearing β-keto sulfonate moiety began with reaction of 4-N-tosylgemcitabine with 1-amino-10-undecene, followed by a series of oxidation and sulfonation steps which yielded the β-keto sulfonate analogues.
The coupling of gemcitabine with carboxylic acids using peptide coupling conditions afforded 4-N-alkanoyl analogues with a terminal alkyne or azido moiety. Click reaction of these 4-N-alkanoyl analogues with dialkylsilyl building blocks gave 4-N-alkanoylsilanegemcitabine analogue. Reaction of 4-N-tosylgemcitabine with vii functionalized azidoalkyl amines provided 4-N-alkylgemcitabine with a terminal azido group. Coupling of the latter with dialkylsilyl building block provided 4-N-alkylsilanegemcitabine. Fluorination of 4-N-alkyl gemcitabine analogues with β-keto sulfonate moieties and of the trisubstituted silane derivatives with KF and 18-Crown-6 (CH3CN/75°C/0.5-1h), gave the corresponding fluorinated 4-N-alkyl and alkanoyl gemcitabine analogues under conditions that are compatible with protocols for positron emission tomography (PET) 18F labeling. The [18F] 4-N-alkyl and alkanoyl silane gemcitabine analogues were successfully synthesized on microscale and macroscale radiochemical protocols. The biodistribution of [18F] 4-N-alkyl gemcitabine analogue was analyzed via PET imaging. The cytotoxicity activity of the silane gemcitabine analogues were studied in cancer L1210 and HEK293 cell lines and their cellular uptake were investigated using HPLC analysis and fluorescence microscopy.
Reduction of ribono-1,4-lactones and gulono-1,4-lactone as well as ribono-1,5-lactone and glucono-1,5-lactones with LTBH (1.2 equiv.) in CH2Cl2 at 0 °C for 30 min provided the corresponding pentose or hexose hemiacetals in chemoselective fashion and in high yields. Commonly used in carbohydrate chemistry protecting groups such as trityl, benzyl, silyl, acetals and to some extent acyls are compatible with this reduction.
Identifier
FIDC001927
Recommended Citation
Gonzalez-Espinoza, Cesar, "Synthesis of Gemcitabine Analogues with Silicon-Fluoride Acceptors for 18F Labeling" (2017). FIU Electronic Theses and Dissertations. 3469.
https://digitalcommons.fiu.edu/etd/3469
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).