Document Type

Dissertation

Degree

Doctor of Philosophy (PhD)

Major/Program

Geosciences

First Advisor's Name

Michael Ross

First Advisor's Committee Title

Committee chair

Second Advisor's Name

Steven F. Oberbauer

Second Advisor's Committee Title

committee member

Third Advisor's Name

Jay P. Sah

Third Advisor's Committee Title

committee member

Fourth Advisor's Name

Jed Redwine

Fourth Advisor's Committee Title

committee member

Fifth Advisor's Name

Leonard J. Scinto

Fifth Advisor's Committee Title

committee member

Keywords

Earth System Sciences, Geosciences

Date of Defense

6-29-2017

Abstract

The tropical hardwood forests of south Florida persist as well-drained patches of broadleaf forest separated by brackish water swamp, marsh, or pineland. In this dissertation, a functional trait approach was used to understand the structure and dynamics of these communities and their responses to abiotic and biotic variation. Twenty-seven permanent plots (20 x 20 m2) were established across the south Florida landscape, representing four sub-regions: Everglades marsh, Long Pine Key, Upper Keys, and Lower Keys. Community weighted mean trait values for four of six selected traits showed significant inter-sub-regional variation. Out of them, three traits (specific leaf area, tree height, and leaf phosphorus) increased significantly from dry and low productivity Florida Keys in the south to the moist and productive areas on the south Florida mainland, while wood density showed the opposite pattern. Trait variance ratios (T-statistic metrics) was used to explore internal filtering (processes that operate within a community) and external filtering (processes that operate at larger scale than that of the individual population or community) on community structure. Both external and internal filtering in the functional composition of south Florida hardwood hammock forest were important for local communities differing in freshwater accessibility, or that occupy different positions along strong edaphic or climatic gradients.

To understand the underlying mechanisms that drive species assembly during forest succession in Florida dry sub-tropical forest, 13 leaf, stem, reproductive, and architectural traits of resident tree species across the successional gradient were measured. Tests of null models showed that younger communities are shaped by environmentally driven processes, while mature communities are shaped by competitively driven processes. The overall trait similarities among species present in North Key Largo tropical dry forest suggest that tree species are specialists on the local environment, and their ability to survive and grow in a stressful environment may be more important than competition for resources at larger scale. Moreover, tree species in these forests may exhibit specialization or trait plasticity in coping with drought by changes in their stomatal morphology or activity, allowing for a balance between gas exchange and water loss in a periodically stressful environment. A significant negative correlation between stomatal density and size, and a positive correlation between leaf δ13C and stomatal density were observed across habitat gradient for one of the dominant hardwood hammock species (Bursera simaruba). Small and densely distributed stomates in tandem seems to represent a strategy that allows hammock species to conserve water under physiological drought. Furthermore, findings from this work also showed both intra- and inter-specific trait variation at regional and local scales influence community assembly patterns in hardwood hammock communities in South Florida.

Identifier

FIDC001963

ORCID

0000-0001-8689-0689

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).