Space division multiple access for wireless sensor networks
Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Electrical Engineering
First Advisor's Name
Kia Makki
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Hao Zhu
Third Advisor's Name
Shih-Ming Lee
Fourth Advisor's Name
Kang K. Yen
Fifth Advisor's Name
Niki Pissinou
Date of Defense
11-6-2007
Abstract
This dissertation proposed a self-organizing medium access control protocol (MAC) for wireless sensor networks (WSNs). The proposed MAC protocol, space division multiple access (SDMA), relies on sensor node position information and provides sensor nodes access to the wireless channel based on their spatial locations. SDMA divides a geographical area into space divisions, where there is one-to-one map between the space divisions and the time slots. Therefore, the MAC protocol requirement is the sensor node information of its position and a prior knowledge of the one-to-one mapping function. The scheme is scalable, self-maintaining, and self-starting. It provides collision-free access to the wireless channel for the sensor nodes thereby, guarantees delay-bounded communication in real time for delay sensitive applications. This work was divided into two parts: the first part involved the design of the mapping function to map the space divisions to the time slots. The mapping function is based on a uniform Latin square. A Uniform Latin square of order k = m2 is an k x k square matrix that consists of k symbols from 0 to k-I such that no symbol appears more than once in any row, in any column, or in any m x m area of main subsquares. The uniqueness of each symbol in the main subsquares presents very attractive characteristic in applying a uniform Latin square to time slot allocation problem in WSNs. The second part of this research involved designing a GPS free positioning system for position information. The system is called time and power based localization scheme (TPLS). TPLS is based on time difference of arrival (TDoA) and received signal strength (RSS) using radio frequency and ultrasonic signals to measure and detect the range differences from a sensor node to three anchor nodes. TPLS requires low computation overhead and no time synchronization, as the location estimation algorithm involved only a simple algebraic operation.
Identifier
FI15101279
Recommended Citation
El Moutia, Abdallah, "Space division multiple access for wireless sensor networks" (2007). FIU Electronic Theses and Dissertations. 3125.
https://digitalcommons.fiu.edu/etd/3125
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).