Document Type

Thesis

Degree

Master of Science (MS)

Major/Program

Electrical Engineering

First Advisor's Name

Jean H. Andrian

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Malek Adjouadi

Third Advisor's Name

Armando B. Barreto

Date of Defense

4-2-1998

Abstract

Many data compression techniques rely on the low entropy and/or the large degree of autocorrelation exhibited by stationary signals. In non-stationary signals, however, these characteristics are not constant, resulting in reduced data compression efficiency. An adaptive scheme is developed that divides non-stationary signals into smaller locally stationary segments, thereby improving overall efficiency. Two principal issues arise in implementing this procedure. The first is practical; an exhaustive search of all possible segmentations is in general computationally prohibitive. The concept of dynamic programming is applied to reduce the expense of such a search. The second involves choosing a cost function that is appropriate for a particular compression method. Two cost functions are employed here, one based on entropy and the other on correlation. It is shown that by using an appropriate cost function, an adaptively segmented signal offers better data compression efficiency than an unsegmented or arbitrarily segmented signal.

Identifier

FI15101266

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).