Document Type
Thesis
Degree
Master of Science (MS)
Major/Program
Mechanical Engineering
First Advisor's Name
Sabri Tosunoglu
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Ibrahim N.Tansel
Third Advisor's Name
Diana Rincon
Date of Defense
12-7-1999
Abstract
The goal of this work is to develop a Rear-End Collision Avoidance System for automobiles. In order to develop the Rear-end Collision Avoidance System, it is stated that the most important difference from the old practice is the fact that new design approach attempts to completely avoid collision instead of minimizing the damage by over-designing cars. Rear-end collisions are the third highest cause of multiple vehicle fatalities in the U.S. Their cause seems to be a result of poor driver awareness and communication. For example, car brake lights illuminate exactly the same whether the car is slowing, stopping or the driver is simply resting his foot on the pedal. In the development of Rear-End Collision Avoidance System (RECAS), a thorough review of hardware, software, driver/human factors, and current rear-end collision avoidance systems are included. Key sensor technologies are identified and reviewed in an attempt to ease the design effort. The characteristics and capabilities of alternative and emerging sensor technologies are also described and their performance compared. In designing a RECAS the first component is to monitor the distance and speed of the car ahead. If an unsafe condition is detected a warning is issued and the vehicle is decelerated (if necessary). The second component in the design effort utilizes the illumination of independent segments of brake lights corresponding to the stopping condition of the car. This communicates the stopping intensity to the following driver. The RECAS is designed the using the LabVIEW software. The simulation is designed to meet several criteria: System warnings should result in a minimum load on driver attention, and the system should also perform well in a variety of driving conditions.
In order to illustrate and test the proposed RECAS methods, a Java program has been developed. This simulation animates a multi-car, multi-lane highway environment where car speeds are assigned randomly, and the proposed RECAS approaches demonstrate rear-end collision avoidance successfully. The Java simulation is an applet, which is easily accessible through the World Wide Web and also can be tested for different angles of the sensor.
Identifier
FI15101226
Recommended Citation
Dravidam, Uttamkumar, "Development of rear-end collision avoidance in automobiles" (1999). FIU Electronic Theses and Dissertations. 3084.
https://digitalcommons.fiu.edu/etd/3084
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Comments
If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to dcc@fiu.edu and include clear identification of the work, preferably with URL.