Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Mechanical Engineering
First Advisor's Name
Cheng-Xian Lin
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Yiding Cao
Second Advisor's Committee Title
Committee Member
Third Advisor's Name
George Dulikravich
Third Advisor's Committee Title
Committee Member
Fourth Advisor's Name
Shekhar Bhansali
Fourth Advisor's Committee Title
Committee Member
Fifth Advisor's Name
Chad Bowers
Fifth Advisor's Committee Title
Committee Member
Keywords
Low Reynolds Number Flow, Microchannel Heat Exchangers, Compact Heat Exchangers, Thermal Hydraulic Performance of Heat Exchangers
Date of Defense
11-10-2016
Abstract
This study focuses on the investigation of flow behavior at low Reynolds numbers by the experimental and numerical performance testing of micro-channel heat exchangers. An experimental study of the heat transfers and pressure drop of compact heat exchangers with louvered fins and flat tubes was conducted within a low air-side Reynolds number range of 20 < ReLp < 225. Using an existing low-speed wind tunnel, 26 sample heat exchangers of corrugated louver fin type, were tested. New correlations for Colburn j and Fanning friction f factor have been developed in terms of non-dimensional parameters. Within the investigated parameter ranges, it seems that both the j and f factors are better represented by two correlations in two flow regimes (one for ReLp = 20 – 80 and one for ReLp = 80 – 200) than a single regime correlation in the power-law format. The results support the conclusion that airflow and heat transfer at very low Reynolds numbers behaves differently from that at higher Reynolds numbers. The effect of the geometrical parameters on the heat exchanger performance was investigated.
The numerical investigation was conducted for further understanding of the flow behavior at the range of experimentally tested Reynolds number. Ten different heat exchanger geometries with varied geometrical parameters obtained for the experimental studies were considered for the numerical investigation. The variations in the louver angle were the basis of the selection. The heat transfer and pressure drop performance was numerically investigated and the effect of the geometrical parameters was evaluated. Numerical results were compared against the experimental results. From the comparison, it is found that the current numerical viscous laminar models do not reflect experimentally observed transitional two regime flow behavior from fin directed to the louver directed at very low Reynolds number ranging from 20 to 200.
The flow distribution through the fin and the louver region was quantified in terms of flow efficiency. The flow regime change was observed at very low Reynolds number similar to the experimental observations. However, the effect of two regime flow change does not reflect on the thermal hydraulic performance of numerical models. New correlations for the flow efficiency � have developed in terms of non-dimensional parameters.
Identifier
FIDC001195
Recommended Citation
Shinde, Pradeep R., "Investigation of Low Reynolds Number Flow and Heat Transfer of Louvered Surfaces" (2016). FIU Electronic Theses and Dissertations. 3038.
https://digitalcommons.fiu.edu/etd/3038
Included in
Aerodynamics and Fluid Mechanics Commons, Automotive Engineering Commons, Energy Systems Commons, Heat Transfer, Combustion Commons
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).