Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Physics
First Advisor's Name
Caroline Simpson
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
James Webb
Second Advisor's Committee Title
Committee Member
Third Advisor's Name
Walter Van Hamme
Third Advisor's Committee Title
Committee Member
Fourth Advisor's Name
Grenville Draper
Fourth Advisor's Committee Title
Committee Member
Keywords
ISM:structure, ISM: H I holes, LITTLE THINGS, Galaxies: dwarf irregular, Kinematics, H I Porosity
Date of Defense
11-8-2016
Abstract
We present a catalog of the neutral atomic hydrogen structures (H I holes) and the analysis of their properties in nearby (≤ 10.3 Mpc) gas-rich dwarf galaxies of the LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey) group. We used high sensitivity (≤ 1.1 mJy beam-1 channel-1), high velocity resolution (1.3 km s-1 to 2.6 km s-1) and high linear resolution (average ~110 pc; angular resolution ~6”) H I data of 37 dwarf irregulars and four blue compact dwarf galaxies. We cataloged H I holes in the entire sample and studied the of the properties of holes. We also investigated the effect of H I porosity on star formation, and the correlation of the star formation rate (SFR) calculated from H I holes with standard star formation tracers Hα and FUV. We detected 306 H I holes in LITTLE THINGS galaxies. We confirmed 22 kpc-sized holes, the largest and the smallest hole diameters are about 2.3 kpc and 38 pc (resolution limit) respectively. The expansion velocities of the holes range from 5 km s-1 (upper limit) to 30 km s-1, and the rotational velocities range from 6 km s-1 to 77 km s-1. The H I disk radii of the galaxies range from about 0.5 kpc to 6.7 kpc. The kinetic ages of the holes range from about 1 to 127 Myr, and the estimated scale heights are varying from 61 pc to 653 pc. The percentage distribution of the holes outside and inside the V-band break radius is nearly uniform, 49% and 51% respectively. In LITTLE THINGS galaxies, we found no obvious correlation between the surface and volume porosities, and SFR. However, two highest and two lowest porosity galaxies have no star formation at present. The holes are consistent with the SFR estimated from the energy required to create a hole and the star formation rates measured from Hα and FUV, indicating that the holes are consistent with a star formation origin.
Identifier
FIDC001205
Recommended Citation
Pokhrel, Nau R., "H I Structure and Kinematics of the Interstellar Medium in the LITTLE THINGS Galaxies" (2016). FIU Electronic Theses and Dissertations. 3028.
https://digitalcommons.fiu.edu/etd/3028
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).