Document Type
Thesis
Degree
Master of Science (MS)
Major/Program
Environmental Engineering
First Advisor's Name
Walter Z. Tang
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Steven C. MceCutcheon
Third Advisor's Name
Wolfgang F. Rogge
Fourth Advisor's Name
Hector R. Fuentes
Date of Defense
3-26-1998
Abstract
An advanced oxidation process, which uses Fenton's Reagent (H2O2/Fe2+), is studied in the destruction of three different classes of azo dyes. The optimal pH and stochiometry for H202 and Fe2+ in the oxidation of the azo dyes were investigated; an experimental optimal ratio was also compared to a theoretical optimal ratio of H202 to Fe2+. The optimal oxidation of monoazo and disazo dyes is at pH 3 and pH 4, respectively. The optimal ratio for monoazo and disazo dyes ranged from 1 to 10. The experimentally determined optimal ratios are in excellent agreement with theoretically predicted optimal H202 to Fe2+ ratio of 11. Complexation was observed in oxidation of trisazo dye Direct Blue 71. A lower optimal ratio of H202 to Fe2+ for trisazo dye than ratios required for mono and disazo dyes, is due to a larger amount of Fe2+ associated with Fe complexation of chromophore.
Due to a relatively large amount of sludge, which is generated by the common Fenton's Reagent, this study was expanded to characterize the performance of a novel H202 and Fe powder system. This system decolorizes the same dyes from Fenton's treatment. Kinetics and mechanism of the reaction were studied. The kinetics followed pseudo-first order and Fenton's Reagent was the major mechanism. The degradation rate depends upon both numbers of azo bonds and auxiliary groups. The rate of decolorization of the dye decreases as the pH level increases. Hydrogen peroxide and iron powder system resulted in higher color removal, at lower sludge production, for selected dyes at lower pH than the Fenton's Reagent treatment option.
Keywords: Azo dyes, Fenton's Reagent, Hydrogen Peroxide, Zero Valent Iron, Hydroxyl Radical, Advanced Oxidation Process, Oxidation, and Optimal Ratio of H20 2/Fe2+.
Identifier
FI14062263
Recommended Citation
Dhulashia, Sangeeta, "Degradation of azo dyes in aqueous solution by H2O2/Fe2+ and H2O2/Fe" (1998). FIU Electronic Theses and Dissertations. 2793.
https://digitalcommons.fiu.edu/etd/2793
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Comments
If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to dcc@fiu.edu and include clear identification of the work, preferably with URL.