Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Electrical Engineering
First Advisor's Name
Grover Larkins
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Armando Barreto
Third Advisor's Name
Kinzy Jones
Fourth Advisor's Name
Chunlei Wang
Fifth Advisor's Name
Jeffrey Fan
Keywords
Superconductivity, Graphene, Doping, HOPG
Date of Defense
7-6-2016
Abstract
The possibility of creating superconductivity in Highly Oriented Pyrolytic Graphite (HOPG) by means of doping was investigated. Bulk HOPG samples were doped with phosphorous using either ion-implantation or by Chemical Vapor Deposition growth with phosphine in the gas mixture. The methods for testing the graphene samples, once doped, were done by performing R vs. T measurements, and determining via observation suppressed superconductive characteristics signaling the presence of the Meissner Effect in a strong applied magnetic field. Before doping, the resistance vs. temperature (R vs. T) characteristic of the HOPG was measured. The R vs. T characteristic was again measured after doping, and for surface multilayers of graphene exfoliated from the post doped bulk sample. A 100 to 350 mT magnetic field was supplied, and the R vs. T characteristic was re-measured on a number of samples.
Phosphorous-implanted HOPG samples exhibit deviations from the expected rise in resistance as the temperature is reduced to some point above 100 K. The application of a modest magnetic field reverses this trend. A step in resistance at a temperature of approximately 50-60 K in all of the samples is clearly observed, as well as a second step at 100-120 K, a third at a temperature range of 150-180 K and a fourth from about 200-240 K. A response consistent with the presence of magnetic field flux pancake vortices in phosphorous implanted HOPG and in phosphorous-doped exfoliated multilayer graphene has been observed. The lack of zero resistance at low temperatures is also consistent with pancake vortex behaviour in the flux-flow regime. The presence of magnetic vortices requires, and is direct evidence of superconductivity.
Identifier
FIDC000772
Recommended Citation
Holland, Kiar, "Doping as a Possible Means to create Superconductivity in Graphene" (2016). FIU Electronic Theses and Dissertations. 2550.
https://digitalcommons.fiu.edu/etd/2550
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).