Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Electrical Engineering
First Advisor's Name
Osama Mohammed
First Advisor's Committee Title
Committee chair
Second Advisor's Name
Arif Sarwat
Second Advisor's Committee Title
Committee member
Third Advisor's Name
Kinzy Jones
Third Advisor's Committee Title
Committee member
Fourth Advisor's Name
Sakhrat Khizroev
Fourth Advisor's Committee Title
Committee member
Fifth Advisor's Name
Mark J. Roberts
Fifth Advisor's Committee Title
Committee member
Keywords
hybrid dc microgrid, energy management system, battery, supercapacitor, protection, adaptive control
Date of Defense
3-7-2016
Abstract
Battery storage devices have been widely utilized for different applications. However, for high power applications, battery storage systems come with several challenges, such as the thermal issue, low power density, low life span and high cost. Compared with batteries, supercapacitors have a lower energy density but their power density is very high, and they offer higher cyclic life and efficiency even during fast charge and discharge processes. In this dissertation, new techniques for the control and energy management of the hybrid battery-supercapacitor storage system are developed to improve the performance of the system in terms of efficiency, power quality and reliability.
To evaluate the findings of this dissertation, a laboratory-scale DC microgrid system is designed and implemented. The developed microgrid utilizes a hybrid lead-acid battery and supercapacitor energy storage system and is loaded under various grid conditions. The developed microgrid has also real-time monitoring, control and energy management capabilities.
A new control scheme and real-time energy management algorithm for an actively controlled hybrid DC microgrid is developed to reduce the adverse impacts of pulsed power loads. The developed control scheme is an adaptive current-voltage controller that is based on the moving average measurement technique and an adaptive proportional compensator. Unlike conventional energy control methods, the developed controller has the advantages of controlling both current and voltage of the system. This development is experimentally tested and verified. The results show significant improvements achieved in terms of enhancing the system efficiency, reducing the AC grid voltage drop and mitigating frequency fluctuation.
Moreover, a novel event-based protection scheme for a multi-terminal DC power system has been developed and evaluated. In this technique, fault identification and classifications are performed based on the current derivative method and employing an artificial inductive line impedance. The developed scheme does not require high speed communication and synchronization and it transfers much less data when compared with the traditional method such as the differential protection approach. Moreover, this scheme utilizes less measurement equipment since only the DC bus data is required.
Identifier
FIDC000253
Recommended Citation
Farhadi, Mustafa, "Hybrid Energy Storage Implementation in DC and AC Power System for Efficiency, Power Quality and Reliability Improvements" (2016). FIU Electronic Theses and Dissertations. 2471.
https://digitalcommons.fiu.edu/etd/2471
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).