Document Type
Thesis
Degree
Master of Science (MS)
Major/Program
Civil Engineering
First Advisor's Name
Young-Kyun Lee
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Nii 0. Attoh-Okine
Third Advisor's Name
L. David Shen
Date of Defense
3-27-1997
Abstract
Demand forecasting is an essential element in the analysis of transportation systems. It is concerned with the behavior of consumers of transportation services and facilities. We choose geographic, demographic, and socioeconomic characteristics of consumers that may affect the travel demand of each selected. We use an artificial neural network to predict travel demand with characteristics selected from three different database sources: Census Summary Tape files, TIGER/Line files, and Federal Transit Administration's National Transit GIS database.
A neural network is an information processing system that is intensely parallel and neural networks are capable of learning how to classify and associate input/output patterns. This capability makes neural network a suitable approach for mode choice modeling for this study.
A neural network has two phases: the training and the testing. In the training phase, we find weights between inputs and outputs, and in the testing phase, neural network calculates outputs representing travel demand with weights from the training phase.
Identifier
FI14060829
Recommended Citation
Chung, Soon, "Mode choice modeling with neural network : Boston area case study" (1997). FIU Electronic Theses and Dissertations. 2358.
https://digitalcommons.fiu.edu/etd/2358
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).