Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Biology
First Advisor's Name
Michael Heithaus
First Advisor's Committee Title
Committee chair
Second Advisor's Name
William Anderson
Second Advisor's Committee Title
Committee member
Third Advisor's Name
Heather Bracken-Grissom
Third Advisor's Committee Title
Committee member
Fourth Advisor's Name
Kevin Boswell
Fourth Advisor's Committee Title
Committee member
Fifth Advisor's Name
Maureen Donnelly
Fifth Advisor's Committee Title
Committee member
Keywords
trophic ecology, deep-sea, stable isotope, elasmobranch, teleost, scavenger, food web, Gulf of Mexico
Date of Defense
7-2-2015
Abstract
The deep-sea is the largest habitat on earth, containing over 90 percent of the world’s oceans and home to over 20,000 species. Deep-sea ecosystems are increasingly impacted by human activities including fishing and oil extraction. To understand potential impacts on deep-sea food webs, it is crucial to gather baseline data in these systems. I quantified the trophic interactions of three groups of deep-water animals across a range of trophic levels living in the northern and eastern Gulf of Mexico using stable isotope analysis. First, I propose methods for correcting δ15N values for the presence of nitrogenous metabolic waste products (e.g., urea) in muscle tissue using chemical extractions and/or species-specific mathematical normalizations. Significant differences in δ15N, %N, and C:N values as a result of extractions were observed in eight of ten shark and all three hagfish species. The δ15N values increased, but shifts in %N and C:N values were not unidirectional. Mathematical normalizations for δ15N values were successfully created for four shark and two hagfish species. I then describe the trophic interactions of three consumer assemblages. Carbon isotopic values indicate a heavy reliance on allochthonous nutrient inputs from surface waters. Nitrogen isotopic values reveal somewhat atypical taxa as top predators in the deep sea. Shark, teleost, and invertebrate species across a wide range of body sizes are feeding at a similar trophic level. This apparent lack of size structuring could be the result of a high degree of opportunistic scavenging or perhaps feeding at many trophic levels simultaneously in an oligotrophic system. There was a high degree of isotopic niche overlap among species within each consumer assemblage, perhaps the result of limited nutrient resources in the deep-sea. In general, individuals from the northern sampling stations displayed higher δ13C and δ15N values than those from the eastern sites. With the exception of a few species, there were no strong relationships between body size and isotopic values. The present study is among the first characterizations of the trophic structure of deep-sea organisms in the Gulf of Mexico and establishes system baselines for future studies describing deep-water systems and investigating anthropogenic impacts.
Identifier
FIDC000085
Recommended Citation
Churchill, Diana A., "Investigating Trophic Interactions of Deep-sea Animals (Sharks, Teleosts, and Mobile scavengers) in the Gulf of Mexico Using Stable Isotope Analysis" (2015). FIU Electronic Theses and Dissertations. 2214.
https://digitalcommons.fiu.edu/etd/2214
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).