Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Electrical Engineering
First Advisor's Name
Kang K. Yen
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Armando Barreto
Second Advisor's Committee Title
committee member
Third Advisor's Name
Arif I. Sarwat
Third Advisor's Committee Title
committee member
Fourth Advisor's Name
Bogdan Carbunar
Fourth Advisor's Committee Title
committee member
Fifth Advisor's Name
Abolfazl Mehbodniya
Fifth Advisor's Committee Title
committee member
Keywords
Time-Delay Switch Attack, Security of Networked Control Systems, Robust Control, Adaptive Communication Channel, Intrusion Detection
Date of Defense
5-15-2015
Abstract
In recent years, the security of networked control systems (NCSs) has been an important challenge for many researchers. Although the security schemes for networked control systems have advanced in the past several years, there have been many acknowledged cyber attacks. As a result, this dissertation proposes the use of a novel time-delay switch (TDS) attack by introducing time delays into the dynamics of NCSs. Such an attack has devastating effects on NCSs if prevention techniques and countermeasures are not considered in the design of these systems. To overcome the stability issue caused by TDS attacks, this dissertation proposes a new detector to track TDS attacks in real time. This method relies on an estimator that will estimate and track time delays introduced by a hacker. Once a detector obtains the maximum tolerable time delay of a plant’s optimal controller (for which the plant remains secure and stable), it issues an alarm signal and directs the system to its alarm state. In the alarm state, the plant operates under the control of an emergency controller that can be local or networked to the plant and remains in this stable mode until the networked control system state is restored.
In another effort, this dissertation evaluates different control methods to find out which one is more stable when under a TDS attack than others. Also, a novel, simple and effective controller is proposed to thwart TDS attacks on the sensing loop (SL). The modified controller controls the system under a TDS attack. Also, the time-delay estimator will track time delays introduced by a hacker using a modified model reference-based control with an indirect supervisor and a modified least mean square (LMS) minimization technique.
Furthermore, here, the demonstration proves that the cryptographic solutions are ineffective in the recovery from TDS attacks. A cryptography-free TDS recovery (CF-TDSR) communication protocol enhancement is introduced to leverage the adaptive channel redundancy techniques, along with a novel state estimator to detect and assist in the recovery of the destabilizing effects of TDS attacks. The conclusion shows how the CF-TDSR ensures the control stability of linear time invariant systems.
Identifier
FIDC000126
Recommended Citation
Sargolzaei, Arman, "Time-Delay Switch Attack on Networked Control Systems, Effects and Countermeasures" (2015). FIU Electronic Theses and Dissertations. 2175.
https://digitalcommons.fiu.edu/etd/2175
Included in
Controls and Control Theory Commons, Power and Energy Commons, Systems and Communications Commons
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).