Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Biology
First Advisor's Name
Ophelia Weeks
First Advisor's Committee Title
Co-Committee Chair
Second Advisor's Name
Lidia Kos
Second Advisor's Committee Title
Co-Committee Chair
Third Advisor's Name
Mingjiang Xu
Third Advisor's Committee Title
Committee Member
Fourth Advisor's Name
John Makemson
Fourth Advisor's Committee Title
Committee Member
Fifth Advisor's Name
Dietrich Lorke
Fifth Advisor's Committee Title
Committee Member
Keywords
Epigenetics, 5hmC, TET2, hematological malignancies, nervous system
Date of Defense
12-3-2014
Abstract
I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems.
In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of hematopoietic stem/progenitor cells to determine whether the deletion of Tet2 can affect the abundance of 5hmC at myeloid, T-cell and B-cell specific gene transcription start sites, which ultimately result in various hematological malignancies. Subsequent Exome sequencing (Exome-Seq) showed that disease-specific genes are mutated in different types of tumors, which suggests that TET2 may protect the genome from being mutated. The direct interaction between TET2 and Mutator S Homolog 6 (MSH6) protein suggests TET2 is involved in DNA mismatch repair. Finally, in vivo mismatch repair studies show that the loss of Tet2 causes a mutator phenotype. Taken together, my data indicate that TET2 binds to MSH6 to protect genome integrity.
In Part II, I intended to better understand the role of Tet2 in the nervous system. 5-hydroxymethylcytosine regulates epigenetic modification during neurodevelopment and aging. Thus, Tet2 may play a critical role in regulating adult neurogenesis. To examine the physiological significance of Tet2 in the nervous system, I first showed that the deletion of Tet2 reduces the 5hmC levels in neural stem cells. Mice lacking Tet2 show abnormal hippocampal neurogenesis along with 5hmC alternations at different gene promoters and corresponding gene expression downregulation. Through the luciferase reporter assay, two neural factors Neurogenic differentiation 1 (NeuroD1) and Glial fibrillary acidic protein (Gfap) were down-regulated in Tet2 knockout cells. My results suggest that Tet2 regulates neural stem/progenitor cell proliferation and differentiation in adult brain.
Identifier
FI15032103
Recommended Citation
Pan, Feng, "Understanding Ten-Eleven Translocation-2 in Hematological and Nervous Systems" (2014). FIU Electronic Theses and Dissertations. 1925.
https://digitalcommons.fiu.edu/etd/1925
Included in
Biochemistry Commons, Bioinformatics Commons, Cancer Biology Commons, Cell Biology Commons, Genetics Commons, Hemic and Lymphatic Diseases Commons, Molecular and Cellular Neuroscience Commons, Molecular Biology Commons, Nervous System Diseases Commons
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).