Document Type
Thesis
Degree
Master of Science (MS)
Major/Program
Biomedical Engineering
First Advisor's Name
Eric T. Crumpler
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
James E. Moore
Third Advisor's Name
Richard T. Schoephoerster
Date of Defense
11-27-2002
Abstract
Characterizing engineered human lung tissue is an important step in developing a functional tissue replacement for lung tissue repair and in vitro analysis. Small tissue constructs were grown by seeding IMR-90 fetal lung fibroblasts and adult microvascular endothelial cells onto a Polyglycolic acid (PGA) polymer template. Introducing the constructs to dynamic culture conditions inside a bioreactor facilitated three-dimensional growth seen in scanning electron microscopy images (SEM).
Characterization of the resultant tissue samples was done using SEM imagery, tensile tests, and biochemical assays to quantify extra-cellular matrix (ECM) composition. Tensile tests of the engineered samples indicated an increase in the mechanical properties when compared with blank constructs. Elastin and collagen content was found to average 3.19% and 15.49% respectively in relation to total mass of the tissue samples. The presence of elastin and collagen within the constructs most likely explains the mechanical differences that we noted.
These findings suggest that the necessary ECM can be established in engineered tissue constructs and that optimization of this procedure has the capacity to generate the load bearing elements required for construction of a functional lung tissue equivalent.
Identifier
FI14051818
Recommended Citation
Boytor, Benjamin, "Characterization of engineered human lung tissue" (2002). FIU Electronic Theses and Dissertations. 1783.
https://digitalcommons.fiu.edu/etd/1783
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).