Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Civil Engineering
First Advisor's Name
Albert Gan
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Priyanka Alluri
Second Advisor's Committee Title
Committee Member
Third Advisor's Name
L. David Shen
Third Advisor's Committee Title
Committee Member
Fourth Advisor's Name
Mohammed Hadi
Fourth Advisor's Committee Title
Committee Member
Fifth Advisor's Name
Zhenmin Chen
Fifth Advisor's Committee Title
Committee Member
Sixth Advisor's Name
Fabian Cevallos
Sixth Advisor's Committee Title
Committee Member
Keywords
Highway Safety Manual, Calibration Factor, Sample Size, Crash Predictions, Variable Prioritization, Negative Binomial, Random Forests, Boosted Regression Trees
Date of Defense
11-14-2014
Abstract
The Highway Safety Manual (HSM) estimates roadway safety performance based on predictive models that were calibrated using national data. Calibration factors are then used to adjust these predictive models to local conditions for local applications. The HSM recommends that local calibration factors be estimated using 30 to 50 randomly selected sites that experienced at least a total of 100 crashes per year. It also recommends that the factors be updated every two to three years, preferably on an annual basis. However, these recommendations are primarily based on expert opinions rather than data-driven research findings. Furthermore, most agencies do not have data for many of the input variables recommended in the HSM. This dissertation is aimed at determining the best way to meet three major data needs affecting the estimation of calibration factors: (1) the required minimum sample sizes for different roadway facilities, (2) the required frequency for calibration factor updates, and (3) the influential variables affecting calibration factors.
In this dissertation, statewide segment and intersection data were first collected for most of the HSM recommended calibration variables using a Google Maps application. In addition, eight years (2005-2012) of traffic and crash data were retrieved from existing databases from the Florida Department of Transportation. With these data, the effect of sample size criterion on calibration factor estimates was first studied using a sensitivity analysis. The results showed that the minimum sample sizes not only vary across different roadway facilities, but they are also significantly higher than those recommended in the HSM. In addition, results from paired sample t-tests showed that calibration factors in Florida need to be updated annually.
To identify influential variables affecting the calibration factors for roadway segments, the variables were prioritized by combining the results from three different methods: negative binomial regression, random forests, and boosted regression trees. Only a few variables were found to explain most of the variation in the crash data. Traffic volume was consistently found to be the most influential. In addition, roadside object density, major and minor commercial driveway densities, and minor residential driveway density were also identified as influential variables.
Identifier
FI14110774
Recommended Citation
Saha, Dibakar, "Improved Criteria for Estimating Calibration Factors for Highway Safety Manual (HSM) Applications" (2014). FIU Electronic Theses and Dissertations. 1701.
https://digitalcommons.fiu.edu/etd/1701
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).