Document Type
Thesis
Degree
Master of Science (MS)
Major/Program
Statistics
First Advisor's Name
Zhenmin Chen
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Florence George
Second Advisor's Committee Title
Committee Member
Third Advisor's Name
Gauri Ghai
Third Advisor's Committee Title
Committee Member
Keywords
Goodness-of-fit test for normality, Monte Carlo Simulation, G test
Date of Defense
11-14-2014
Abstract
Goodness-of-fit tests have been studied by many researchers. Among them, an alternative statistical test for uniformity was proposed by Chen and Ye (2009). The test was used by Xiong (2010) to test normality for the case that both location parameter and scale parameter of the normal distribution are known. The purpose of the present thesis is to extend the result to the case that the parameters are unknown. A table for the critical values of the test statistic is obtained using Monte Carlo simulation. The performance of the proposed test is compared with the Shapiro-Wilk test and the Kolmogorov-Smirnov test. Monte-Carlo simulation results show that proposed test performs better than the Kolmogorov-Smirnov test in many cases. The Shapiro Wilk test is still the most powerful test although in some cases the test proposed in the present research performs better.
Identifier
FI14110735
Recommended Citation
Shi, Weiling, "An Alternative Goodness-of-fit Test for Normality with Unknown Parameters" (2014). FIU Electronic Theses and Dissertations. 1623.
https://digitalcommons.fiu.edu/etd/1623
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).