Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Civil Engineering
First Advisor's Name
Arindam Gan Chowdhury
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Amir Mirmiran
Second Advisor's Committee Title
Committee Member
Third Advisor's Name
Peter Irwin
Third Advisor's Committee Title
Committee Member
Fourth Advisor's Name
Nakin Suksawang
Fourth Advisor's Committee Title
Committee Member
Fifth Advisor's Name
Irtishad Ahmad
Fifth Advisor's Committee Title
Committee Member
Keywords
variable message sign, drag, galloping, vortex shedding, gust factor
Date of Defense
11-12-2014
Abstract
The increasing nationwide interest in intelligent transportation systems (ITS) and the need for more efficient transportation have led to the expanding use of variable message sign (VMS) technology. VMS panels are substantially heavier than flat panel aluminum signs and have a larger depth (dimension parallel to the direction of traffic). The additional weight and depth can have a significant effect on the aerodynamic forces and inertial loads transmitted to the support structure. The wind induced drag forces and the response of VMS structures is not well understood. Minimum design requirements for VMS structures are contained in the American Association of State Highway Transportation Officials Standard Specification for Structural Support for Highway Signs, Luminaires, and Traffic Signals (AASHTO Specification). However the Specification does not take into account the prismatic geometry of VMS and the complex interaction of the applied aerodynamic forces to the support structure. In view of the lack of code guidance and the limited number research performed so far, targeted experimentation and large scale testing was conducted at the Florida International University (FIU) Wall of Wind (WOW) to provide reliable drag coefficients and investigate the aerodynamic instability of VMS. A comprehensive range of VMS geometries was tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. The mean normal, lateral and vertical lift force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model. Wind tunnel testing confirmed that drag on a prismatic VMS is smaller than the 1.7 suggested value in the current AASHTO Specification (2013). An alternative to the AASHTO Specification code value is presented in the form of a design matrix. Testing and analysis also indicated that vortex shedding oscillations and galloping instability could be significant for VMS signs with a large depth ratio attached to a structure with a low natural frequency. The effect of corner modification was investigated by testing models with chamfered and rounded corners. Results demonstrated an additional decrease in the drag coefficient but a possible Reynolds number dependency for the rounded corner configuration.
Identifier
FI14110728
Recommended Citation
Meyer, Debbie, "Aerodynamic Testing of Variable Message Signs" (2014). FIU Electronic Theses and Dissertations. 1616.
https://digitalcommons.fiu.edu/etd/1616
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).