Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Chemistry
First Advisor's Name
Yuan Liu
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Irina Agoulnik
Second Advisor's Committee Title
Committee Member
Third Advisor's Name
David Chatfield
Third Advisor's Committee Title
Committee Member
Fourth Advisor's Name
Kathleen Rein
Fourth Advisor's Committee Title
Committee Member
Fifth Advisor's Name
Xiaotang Wang
Fifth Advisor's Committee Title
Committee Member
Keywords
Biochemistry
Date of Defense
9-12-2014
Abstract
Trinucleotide repeat (TNR) expansion is the cause of more than 40 types of human neurodegenerative diseases such as Huntington’s disease. Recent studies have linked TNR expansion with oxidative DNA damage and base excision repair (BER). In this research, we provided the first evidence that oxidative DNA damage can induce CAG repeat deletion/contraction via BER. We found that BER of an oxidized DNA base lesion, 8-oxoguanine in a CAG repeat tract, resulted in the formation of a CTG hairpin at the template strand. DNA polymerase β (pol b) then skipped over the hairpin creating a 5’-flap that was cleaved by flap endonuclease 1 (FEN1) leading to CAG repeat deletion. To further investigate whether BER may help to shorten an expanded TNR tract, we examined BER in a CAG repeat hairpin loop. We found that 8-oxoguanine DNA glycosylase removed the oxidized base located in the loop region of the hairpin leaving an abasic site. Apurinic/apyrimidinic (AP) endonuclease 1 then incised the 5’-end of the abasic site leaving a nick in the loop. This further converted the hairpin into an intermediate with a 3’-flap and a 5’-flap. As a 5’-3’ endonuclease, FEN1 cleaved the 5’-flap, whereas a 3’-5’ endonuclease, Mus81/Eme1, removed the 3’-flap. The coordination between FEN1 and Mus81/Eme1 ultimately resulted in removal of a CAG repeat hairpin attenuating or preventing TNR expansion. To further explore if pol β bypass of an oxidized base lesion, 5’,8-cyclodeoxyadenosine, may affect TNR instability, we examined pol β DNA synthesis in bypassing this base lesion and found that the lesion preferentially induced TNR deletion during BER and Okazaki fragment maturation. The repeat deletion was mediated by the formation of a loop in the template strand induced specifically by the damage. Pol β then skipped over the loop structure creating a 5’-flap that was efficiently removed by FEN1 leading to repeat deletion. Our study demonstrates that pol β-mediated BER plays an important role in mediating TNR deletion and removing a TNR hairpin to prevent TNR expansion. Our research provides a molecular basis for further developing BER as a target for prevention and treatment of neurodegenerative diseases caused by TNR expansion.
Identifier
FI14110704
Recommended Citation
Xu, Meng, "Oxidative DNA Damage Modulates Trinucleotide Repeat Instability Via DNA Base Excision Repair" (2014). FIU Electronic Theses and Dissertations. 1576.
https://digitalcommons.fiu.edu/etd/1576
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).