Lei LiFollow

Document Type



Doctor of Philosophy (PhD)


Computer Science

First Advisor's Name

Tao Li

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Shu-Ching Chen

Third Advisor's Name

Jainendra K Navlakha

Fourth Advisor's Name

Bogdan Carbunar

Fifth Advisor's Name

Debra VanderMeer


Recommender Systems, Personalization, User Profiling, Recommendation Applications

Date of Defense



Personalized recommender systems aim to assist users in retrieving and accessing interesting items by automatically acquiring user preferences from the historical data and matching items with the preferences. In the last decade, recommendation services have gained great attention due to the problem of information overload. However, despite recent advances of personalization techniques, several critical issues in modern recommender systems have not been well studied. These issues include: (1) understanding the accessing patterns of users (i.e., how to effectively model users' accessing behaviors); (2) understanding the relations between users and other objects (i.e., how to comprehensively assess the complex correlations between users and entities in recommender systems); and (3) understanding the interest change of users (i.e., how to adaptively capture users' preference drift over time). To meet the needs of users in modern recommender systems, it is imperative to provide solutions to address the aforementioned issues and apply the solutions to real-world applications.

The major goal of this dissertation is to provide integrated recommendation approaches to tackle the challenges of the current generation of recommender systems. In particular, three user-oriented aspects of recommendation techniques were studied, including understanding accessing patterns, understanding complex relations and understanding temporal dynamics. To this end, we made three research contributions. First, we presented various personalized user profiling algorithms to capture click behaviors of users from both coarse- and fine-grained granularities; second, we proposed graph-based recommendation models to describe the complex correlations in a recommender system; third, we studied temporal recommendation approaches in order to capture the preference changes of users, by considering both long-term and short-term user profiles. In addition, a versatile recommendation framework was proposed, in which the proposed recommendation techniques were seamlessly integrated. Different evaluation criteria were implemented in this framework for evaluating recommendation techniques in real-world recommendation applications.

In summary, the frequent changes of user interests and item repository lead to a series of user-centric challenges that are not well addressed in the current generation of recommender systems. My work proposed reasonable solutions to these challenges and provided insights on how to address these challenges using a simple yet effective recommendation framework.





Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).