Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Computer Science
First Advisor's Name
Tao Li
First Advisor's Committee Title
Committee Chair
Second Advisor's Name
Sundaraja Sitharama Iyengar
Third Advisor's Name
Shu-Ching Chen
Fourth Advisor's Name
Bogdan Carbunar
Fifth Advisor's Name
Debra VanderMeer
Keywords
Data Mining, Information Retrieval, Social Network, Social Media
Date of Defense
3-26-2014
Abstract
Online Social Network (OSN) services provided by Internet companies bring people together to chat, share the information, and enjoy the information. Meanwhile, huge amounts of data are generated by those services (they can be regarded as the social media ) every day, every hour, even every minute, and every second. Currently, researchers are interested in analyzing the OSN data, extracting interesting patterns from it, and applying those patterns to real-world applications. However, due to the large-scale property of the OSN data, it is difficult to effectively analyze it.
This dissertation focuses on applying data mining and information retrieval techniques to mine two key components in the social media data — users and user-generated contents. Specifically, it aims at addressing three problems related to the social media users and contents: (1) how does one organize the users and the contents? (2) how does one summarize the textual contents so that users do not have to go over every post to capture the general idea? (3) how does one identify the influential users in the social media to benefit other applications, e.g., Marketing Campaign?
The contribution of this dissertation is briefly summarized as follows. (1) It provides a comprehensive and versatile data mining framework to analyze the users and user-generated contents from the social media. (2) It designs a hierarchical co-clustering algorithm to organize the users and contents. (3) It proposes multi-document summarization methods to extract core information from the social network contents. (4) It introduces three important dimensions of social influence, and a dynamic influence model for identifying influential users.
Identifier
FI14040816
Recommended Citation
Li, Jingxuan, "Mining the Online Social Network Data: Influence, Summarization, and Organization" (2014). FIU Electronic Theses and Dissertations. 1241.
https://digitalcommons.fiu.edu/etd/1241
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).